
Trains, Hotels, and Async
Dean Tribble
February 2019

● Make travel arrangements with a hotel and train
○ Purchase BOTH or NEITHER ticket
○ Where the hotel and train are on different

shards/chains/vat/…

● Thank you, Andrew Miller

Train-Hotel Problem

In a transaction
● Purchase the hotel reservation
● Purchase the train ticket
● If either fail, abort and purchase neither

● BUT distributed atomic transactions are hard
○ And likely infeasible in the byzantine context

The atomic approach

● Goal: Transfer $1 from an account in one bank to an
account in another
○ Use distributed transaction
○ Lock both accounts
○ Update both balances
○ Coordinate on the commit
○ Last participant is an uncompensated option

● What do banks do?

Distributed atomicity considered harmful

● Pioneers in distributed electronic markets
○ Agoric Open Systems papers

● Driven security and async support into JavaScript
○ Promise, proxies, async/await, realms, etc.

● Built brokerage information systems
● Built multi-billion-dollar payment systems

Who are we?

dfgdfg

public chain soloquorum quorum

Smart Contracts

erights

a transferrable, unforgeable authorization to use
the object it designates

In a programming language...

Just an object reference

An object-capability (ocap) is...

// define a gate counter

function makeEntryExitCounter() {

let count = 0;

return def({

countEntry() { return ++count; },

countExit() { return --count; }

});

}

Simple ocap pattern

// create a gate counter

const counter = makeEntryExitCounter();

// share it with the guards

entryGuard.use(counter.countEntry);

exitGuard.use(counter.countExit);

Simplified, of course!

makeMint(name) ⇒mint
mint(amount) ⇒ Purse

Purse
getBalance() ⇒ number
getIssuer() ⇒ Issuer
deposit(amount, srcPurse)

Mints and Purses
// setup for concert tickets

const ticketsM =

mintMaker.makeMint("Concert");

// publish concert ticket issuer

const concertI = ticketsM.getIssuer();

// create and return a ticket

return ticketsM.mint(1);

// send a new ticket to carol

const ticketP = ticketsM.mint(1);

carol.receiveTicket(ticketP);

Issuer
makeEmptyPurse
getExclusive(Purse)

⇒ Purse

Issuers and exclusive transfer
// carol confirms ticket and returns payment

receiveTicket(ticketP) {

const tkt = concertI.getExclusive(ticketP);

...

return paymentPurse;

}

// send a new ticket to carol and get a payment

const ticketP = ticketsM.mint(1);

const paymentP = carol.receiveTicket(ticketP);

myAccount.deposit(paymentP);

// provide a new ticket and get a payment via a new escrow with carol

const [ticketFacet, payFacet] = EscrowExchange.make(ticketIssuer, moneyIssuer);

carol.receiveTicket(ticketFacet);

payFacet.exchange(ticketsM.mint(1), myAccount, ticketPrice);

Escrow contract and market safety

// provide a new ticket and get a payment via a new escrow with carol

const [ticketFacet, payFacet] = EscrowExchange.make(ticketIssuer, moneyIssuer);

carol.receiveTicket(ticketFacet);

payFacet.exchange(ticketsM.mint(1), myAccount, ticketPrice);

// carol provides the payment and gets the ticket

receiveTicket(ticketFacet) {

const carolFacet = EscrowExchange.getExclusive(ticketFacet);

carolFacet.exchange(paymentPurse, myTickets, 1);

}

Escrow contract and market safety

export function EscrowExchange(a, b) { // a from Alice, b from Bob
function makeTransfer(issuerP, srcPurseP, dstPurseP, amount) {
const escrowPurseP = issuerP.getExclusive(amount, srcPurseP); // escrow the goods
return def({

phase1() { return escrowPurseP; },
phase2() { return dstPurseP.deposit(amount, escrowPurseP); }, // deliver the goods
abort() { return srcPurseP.deposit(amount, escrowPurseP); } // return the goods

});
}

const aT = makeTransfer(a.srcP, b.dstP, b.amountNeeded); // setup transfer from alice to bob
const bT = makeTransfer(b.srcP, a.dstP, a.amountNeeded); // setup transfer from bob to alice
return Vow.race([Vow.all([aT.phase1(), bT.phase1()]), // if both escrow actions succeed…

failOnly(a.cancellationP),
failOnly(b.cancellationP)])

.then(_ => Vow.all([aT.phase2(), bT.phase2()]), // … then complete the transaction
ex => Vow.all([aT.abort(), bT.abort(), ex])); // otherwise, return the supplied goods

};

Escrow agent contract in twenty lines

● Make a new Transfer in each direction; call Stage1
○ Transfer - one per direction

■ Stage1 Transfer into a new escrow purse
■ Stage2 Transfer from escrow purse to dest
■ Abort Transfer from escrow purse to src

● Race:
○ If all transfer.stage1 succeed, call Stage2
○ If any fail or cancel, call Abort

Escrow agent

A bounded-time right to purchase a good
the right is itself a good

● Make a new escrow for the desired transaction
● Post the digital good to the sell-facet

○ with an expiration cancelation
● Return a CoveredCall, containing the buy side

○ exercise – invoke the buy-facet of the escrow
○ getExclusive – the option is also a digital good

Covered call option

● Make travel arrangements with a hotel and train
○ Purchase BOTH or NEITHER ticket
○ Where the hotel and train are on different

shards/chains/vat/…

Train-Hotel Problem

● Request covered-call options for ticket & hotel
○ concurrent and asynchronous

● When enough have fulfilled to enable travel…
○ Decide! - locally atomic

● Exercise the selected options
○ Concurrent and asynchronous
○ Optionally, reject unused options

The simple async solution

Intermediate states are visible so…

● Easy to request overlapping options from multiple
sources
○ Different hotels on different shards
○ Multiple cities and/or times
○ Code can reason about response time and

timeliness

More general vacation

● Reusable components by infrastructure experts
○ Escrow agent
○ Covered call
○ Auctions
○ Multi-goods purchase!

● Dapps by domain experts

Power of a framework

● Remote invocation supports digital assets on other
machines/chains/vats

● Distributed commerce requires
○ Acquire rights async
○ Decide locally
○ Apply consequences async

Async to the rescue!

export function escrowExchange(a, b) { // a from Alice, b from Bob
function makeTransfer(srcPurseP, dstPurseP, amount) {
const issuerP = Vow.join(srcPurseP.getIssuer(), dstPurseP.getIssuer());
const escrowPurseP = issuerP.getExclusive(amount, srcPurseP); // escrow the goods
return def({

phase1() { return escrowPurseP; },
phase2() { return dstPurseP.deposit(amount, escrowPurseP); }, // deliver the goods
abort() { return srcPurseP.deposit(amount, escrowPurseP); } // return the goods

});
}

const aT = makeTransfer(a.srcP, b.dstP, b.amountNeeded); // setup transfer from alice to bob
const bT = makeTransfer(b.srcP, a.dstP, a.amountNeeded); // setup transfer from bob to alice
return Vow.race([Vow.all([aT.phase1(), bT.phase1()]), // if both escrow actions succeed…

failOnly(a.cancellationP),
failOnly(b.cancellationP)])

.then(_ => Vow.all([aT.phase2(), bT.phase2()]), // … then complete the transaction
ex => Vow.all([aT.abort(), bT.abort(), ex])); // otherwise, return the supplied goods

};

Escrow contract in twenty lines

Questions?

● https://agoric.com
● @agoric

● Weekly progress Proof of Work Newsletter
○ http://proofofwork.news/
○ https://agoric.com/weekly-updates/

● Download proof of concept
○ https://github.com/Agoric/PlaygroundVat

Find out more, get involved

https://agoric.com/
https://twitter.com/agoric?lang=en
http://proofofwork.news/
https://agoric.com/weekly-updates/
https://github.com/Agoric/PlaygroundVat

// define a gate counter

const dir = storage ! openDirectory("foo");

const file = dir ! openFile("bar.txt");

const content = file ! read();

…use content…

Pipelining

Pipelining in prior systems resulted in

>100x reduction in network roundtrips

…use content…

…use content…

The buzzword "web3" suggests the lax, security-poor programming habits of the web. When crypto or smart
contracts are programmed like a web page they are doomed. Sustainably successful blockchains and their

apps are based on far more secure, careful, and slow programming methods.”

Nick Szabo, Feb 2018

Web 2 breaches demonstrate the inadequacy of identity-based
security for composing software systems

Problem:

By default, excess authority

enables programmers, either

accidentally, or with

malicious intent, to capture

information from libraries of

the web page its running on.

Web 3- Decentralized Web

Impact:

Stolen value

Example:
Attacker can exfiltrate money — hundreds
of millions of dollars.

Mitigation:
Utilize SES which confines code to
compartments so that excess authority
does not allow access

Web 2 - Social Web

Impact:

Stolen data

Example:
Exfiltrating patient data is a

HIPAA violation.

Mitigation:
Respond and apologize

“

A contract-like arrangement, expressed in
code, where the behavior of the program
enforces the terms of the contract

What is a smart contract?

