
Reasoning about Risk and Trust in an Open Word

Sophia Drossopoulou1, James Noble2, Mark S. Miller3, and Toby Murray4

1 Imperial College London scd@doc.ic.ac.uk
2 Victoria University of Wellington kjx@ecs.vuw.ac.nz

3 Google, Inc. erights@google.com
4 NICTA and UNSW toby.murray@nicta.com.au

Abstract. Contemporary open systems use components developed by different
parties, linked together dynamically in unforeseen constellations. Code needs to
live up to strict security requirements, and ensure the correct functioning of its
objects even when they collaborate with external, potentially malicious, objects.
In this paper we propose special specification predicates that model risk and trust
in open systems. We specify Miller, Van Cutsem, and Tulloh’s escrow exchange
example, and discuss the meaning of such a specification.
We propose a novel Hoare logic, based on four-tuples, including an invariant
describing properties preserved by the execution of a statement as well as a post-
condition describing the state after execution. We model specification and pro-
graming languages based on the Hoare logic, prove soundness, and prove the key
steps of the Escrow protocol.

1 Introduction

Traditional systems designs are based on a closed world assumption: drawing a sharp
border around a system where the system as a whole can be trusted because every com-
ponent inside the border is known to be trustworthy, or is confined [25] by trustworthy
mechanisms. Open systems, on the other hand, have an open world assumption: they
must interact with a wide range of component objects with different levels of mutual
trust (or distrust) — and whose configuration dynamically changes. Given a method
request x.m(y), what can we conclude about the behaviour of this request if we know
nothing about the receiver x?

In this paper, we lay the foundations for reasoning about the correctness of these
kinds of open systems. Building on the object-capability security model [30] we intro-
duce a first-class notion of trust, where we write “o obeys Spec” to mean that object
o can be trusted to obey specification Spec. The obeys predicate is hypothetical: there
is no central authority that can assign trustworthiness (or not) to objects; there is no
trust bit that we can test. Rather, “o obeys Spec” is an assumption that may or may not
be true, and we will use that assumption to reason by cases. If we trust an object, we
can use the object’s specification Spec to determine the results of a method call on that
object. If we don’t trust the object, we determine the maximum amount of damage the
call could do: the risk of calling a method that turns out not to meet its specification.

Risks are effects against which we want to guard our objects: bounds on the poten-
tial damage caused by calls to untrusted objects. The key to delineating risks are two fur-
ther hypothetical predicates: MayAccess and MayAffect. We write MayAffect(o,p)

to mean that it is possible that some method invocation on o would affect the object or
property p, and MayAccess(o,p) to mean that it is possible that the code in object o
could potentially gain a capability to access to p. This first-class notion of risk comple-
ments our first-class notion of trust: MayAccess and MayAffect let us reason about
the potential damage to a system when one or more objects are not trustworthy.

Our complementary notions of trust and risk are set within a very flexible specifi-
cation language, and supported by an Hoare logic, enabling us to reason whether or not
objects can be trusted to meet their specifications, providing sufficient security guar-
antees while mitigating any risks. Building on our earlier work [15, 17] we formalise
and prove correctness, trust, and risk for the Escrow Exchange [31] a trusted third party
that manages exchanges of different goods (e.g. money and shares) between untrust-
ing counterparties [44]. We were surprised to find that the specification for the Escrow
Exchange is weaker than originally anticipated in two significant aspects: the escrow
cannot guarantee that a reported successful transaction implies a) that the participants
were trustworthy, nor that b) the participants are exposed to no risk by an untrustworthy
participant (but we were able to characterize the risk to which participants are exposed).
We were even more surprised to realize that it is impossible to write an escrow which
would give guarantees a) and b) — all the more striking given that a co-author is one of
the original developers of the escrow example.

Common approaches to reasoning about programs cannot deal with the escrow ex-
change example. Most program specification and verification methods have an implicit
underlying assumption that components are meant to be trustworthy (i.e. meet their
specifications). Our approach first makes that assumption explicit (as obeys), lets us
reason hypothetically and conditionally about those trust assumptions, even in cases
where those assumptions fail (by quantifying risk via MayAccess and MayAffect).
Paper Organization Section 2 introduces the Escrow Exchange example, shows why a
traditional specification is not descriptive enough and why a naive implementation is not
robust enough. Section 3 introduces our constructs and Hoare logic for modelling trust
and risk, which we apply to a revised implementation of the Escrow to reason formally
about its correctness. Section 4 discusses related work, and Section 5 concludes.
Disclaimers Throughout this paper, we make the simplifying assumptions that no two
different arguments to methods are aliases, that the program is executed sequentially,
that we can quantify over the entire heap, that objects do not breach their own encapsu-
lation or throw exceptions, that machines on open networks are not mutually suspicious,
and that any underlying network is error-free. This allows us to keep the specifications
short, and to concentrate on the questions of risk and trust. Aliasing, concurrency, quan-
tification, confinement, network errors, and exceptions can be dealt with using known
techniques, but doing so would not shed further light on the questions we address.
Contribution This paper extends earlier informal work presented at the PLAS work-
shop [17]. Here we contribute the full formal foundations of the system, defining obeys ,
MayAccess, and MayAffect in the context of the Focal and Chainmail languages (de-
tails in the full technical report [18]). We present a novel Hoare logic based on four-
tuples to specify properties preserved during execution: this allows us to model trust
and delineate risk even when a method’s receiver is unknown. We use our logic to
prove formally that the key steps of the escrow example meet the specification.

2

2 Escrow Exchange

Figure 1 shows a first attempt to implement an escrow exchange, also shown in previous
work [31, 36]. We model both money and goods by Purses (a resource model proposed
in E [32]). The call dst.deposit(amt, src) will either transfer amt resources from
the src purse to the dst purse and return true, or do nothing and return false. A new,
empty purse can be created at any time by asking an existing purse to sprout — the
new purse has a zero balance but can then be filled via deposit.

1 method deal_version1() {
2

3 // make temporary money Purse
4 escrowMoney = sellerMoney.sprout
5 // make temporary goods Purse
6 escrowGoods = buyerGoods.sprout
7

8 res = escrowMoney.deposit(price, buyerMoney)
9 if (!res) then

10 // insufficient money in buyerMoney
11 // or different money mints
12 { return false }
13

14 // sufficient money; same mints.
15 // price transferred to escrowMoney
16 res = escrowGoods.deposit(amt, sellerGoods)
17 if (!res) then
18 // insufficient goods in sellerGoods
19 // or different goods mints
20 { // undo the goods transaction
21 buyerMoney.deposit(price,escrowMoney)
22 return false }
23

24 // price in escrowMoney; amt in escrowGoods.
25 // now complete the transaction
26 sellerMoney.deposit(price, escrowMoney)
27 buyerGoods.deposit(amt, escrowGoods)
28 return true
29 }

Fig. 1. First attempt at Escrow Exchange deal method

The goal of the escrow is to exchange amt goods for price money, between the
purses of a seller and buyer. To make the exchange transactional, we use two private
escrow purses, one for on each side of the transaction (money and goods). Lines 3–6
of Figure 1 show how we first set up the escrow purses, by sprouting two new purses
(escrowMoney and escrowGoods) from their respective input purses.

3

It is important that the escrow purses are newly created within the method, and can-
not have been manipulated or retained by the buyer or seller, which is why the escrow
asks sellerMoney to make one, and buyerGoods to make the other. The requirements
of an open system means that the escrow method cannot have the escrow purses before
the transaction, because the escrow cannot know the right kind of purses to create, and
there is no central trusted authority that could provide them. Buyers and sellers cannot
provide escrows purses directly, precisely because we must assume they don’t trust each
other: if they did, they wouldn’t need to use an escrow.

Second, we attempt to escrow the buyer’s money by transferring it from the buyer-
Money purse into the new escrowMoney purse — line 8. If this deposit request re-
turns true, then the money will have been transferred. If the deposit fails we abort the
transaction. Third, we attempt to escrow the seller’s goods — line 16, again by deposit-
ing them into the other escrow purse. If we are unsuccessful, we again abort the transac-
tion, after we have returned the escrowed money to the buyer — lines 21 and 22. At this
point (line 26) the deal method should have sole access to sufficient money and goods in
the escrow purses. The method completes the transaction by transferring the escrowed
money and goods into the respective destination purses — lines 26 and 27. Thanks to
the escrow purses, these transfers should not fail, and indeed, if deal_version1 is
called in good faith it will carry out the transaction correctly. Unfortunately, we cannot
assume good faith in a mutually untrusting open system.

2.1 The failure of deal_version1

The method in Figure 1 does not behave correctly in an open system. The critical prob-
lems are assumptions about trust: both the code and the specification implicitly trust the
purse objects with which they interact.

Imagine if sellerMoney was a malicious, untrustworthy object. At line 4, the
sprout call could itself return a malicious object, which would then be stored in
escrowMoney. At line 8, escrowMoney.deposit(price, buyerMoney) would let
the malicious escrowMoney purse steal all the money out of buyerMoney purse, and
still return false. As a result, the seller would lose all their money, and receive no
goods! Even if the seller was more cautious, and themselves sprouted a special tempo-
rary purse with a balance of exactly price to pass in as sellerMoney, they would still
lose all this money without any recompense.

Perhaps there is something else we could do — a trusted method on every object,
say, that returns true if the object is trusted, and false otherwise? The problem, of
course, is that an object that is untrustworthy is, well, untrustworthy: we cannot expect
a trusted method ever to return false. This leads to our definition of trust: trust is
hypothetical, and in relation to some specification of expected behaviour.

2.2 Modelling Trust and Risk: obeys , MayAccess and MayAffect

The key claim of this paper is that, to reason about the behaviour of systems in an
open world, we need specifications that let us talk about trust and risk explicitly. In
the rest of this section, we informally introduce three novel specification language con-
structs: obeys to model trust, and MayAccess and MayAffect to model risk, show

4

how they can be used to specify the purse and escrow examples, and argue a revised
deal_version2 method can meet that specification. Section 3 formalises these ideas.

To model trust, we introduce a special predicate, obeys , of the form o obeys Spec

which we interpret to mean that the current object trusts o to adhere to the specification
Spec. Because we generally can’t be sure that an object — especially one supplied from
elsewhere in an open system — can actually be trusted to obey a particular specification,
our reasoning and specifications are hypothetical: analysing the same piece of code
under different trust hypotheses — i.e. assuming that particular objects may or may not
be trusted to obey particular specifications.

Thus, if object o can be trusted to obey specification Spec, and Spec had a pol-
icy describing the behaviour of some method m, then we may expect the method call
o.m(...) to behave according to that policy — otherwise, all bets are off.

To model risk, we introduce predicates MayAccess and MayAffect, which express
whether an object may read or may affect another object or property. We will write
MayAffect(o,p) to mean that it is possible that some method invocation on o would
affect the object or property p. Similarly, we will write MayAccess(o,p) to mean that
it is possible that the code in object o could potentially gain a capability to access to
p — that is, a reference to p. In practice, MayAccess(o,p) means that p is in the
transitive closure of the points-to relation on the heap starting from o including both
public and private references.

2.3 Valid Purse: Specifying Purse

Using obeys , MayAccess, and MayAffect, we write the ValidPurse specification
in Figure 2 that makes trust and risk explicit.

ValidPurse consists of five policies. Pol_deposit_1 and Pol_deposit_2 taken
together distinguish between a successful and an unsuccessful deposit, signalled by re-
turning true or false respectively. In the first case, i.e. Pol_deposit_1 where the
result is true, argument src must have been a valid purse (src obeys ValidPurse)
which can trade with the receiver, and src must have sufficient balance. In the sec-
ond case, i.e. Pol_deposit_2 where the result is false, either src was not a valid
purse, or would not trade with the receiver, or had insufficient funds. To quote Miller et
al. [32]: “A reported successful deposit can be trusted as much as one trusts the purse
one is depositing into”.

The last two lines in the postcondition of Pol_deposit_1 and Pol_deposit_2

provide framing conditions. In the first case, the transaction will happen, but all other
purses will be unmodified (line 14 in figure 2) , whereas in the second case no purses
will be modified (line 24 in figure 2). Another framing condition, appears on lines
15, 25 and 36 of figure 2, and requires that the methods do not leak access to any
ValidPurse object. In other words, if after the method call, a pre-existing o has ac-
cess to a ValidPurse object p, then o already had access to a p before the call.

Pol_sprout promises that the result is a trusted purse that can trade with the re-
ceiver, no other valid purse’s balance is affected, and references have not been leaked.

Pol_can_trade_constant guarantees that whether or not two purses can trade
with each other can never change, no matter what code is run. This is another key

5

1 specification ValidPurse {
2 field balance // Number
3

4 policy Pol_deposit_1 // 1st case:
5 amt2 N
6 { res = this.deposit(amt, src) }

7 res ! (
8 // TRUST
9 src obeys preValidPurse ^ CanTrade(this,src)pre

10 // FUNCTIONAL SPECIFICATION
11 ^ 0amtsrc.balancepre ^
12 this.balance=this.balancepre+amt ^

src.balance=src.balancepre�amt ^
13 //RISK
14 8p.(p obeys preValidPurse ^ p/2 {this,src} !

p.balance=p.balancepre) ^
15 8o:preObject. 8p obeys preValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p))
16

17 policy Pol_deposit_2 // 2nd case:
18 amt2 N
19 { res = this.deposit(amt, src) }

20 ¬res ! (
21 // TRUST and FUNCTIONAL SPECIFICATION
22 ¬(src obeys pre ValidPurse ^ CanTrade(this,src)pre ^

0amtsrc.balancepre) ^
23 // RISK
24 8p.(p obeys preValidPurse! p.balance=p.balancepre) ^
25 8o:preObject. 8 p obeys preValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p))

Fig. 2. ValidPurse specification

ingredient of our approach: we can require that our code must preserve properties in the
face of unknown code.

Pol_protect_balance guarantees that a valid purse p’s balance can only be
changed: — MayAffect(o,p.balance) — by an object o that may access that purse:
MayAccess(o,p).

Finally, the abstract predicate CanTrade holds when two Purses can trade with
each other. CanTrade must be reflexive, but does not require that its arguments have
the same class. It guarantees that deposit can transfer resources from one purse to
another. This could involve a clearing house, interbank exchange, or other mechanisms
abstract predicates can be implemented in different ways.

The use of assertions about the pre-state in methods’ postconditions increases the
expressive power of our specifications. For example, consider:
(A) amt 2 N {res=this.deposit(amt,src)} res! scr obeys

pre

ValidPurse

This allows us to deduce properties about the pre-state by observing the result of the

6

27 policy Pol_sprout
28 true
29 { res = this.sprout() }

30 // TRUST
31 res obeys ValidPurse ^ CanTrade(this,res)pre ^
32 // FUNCTIONAL SPECIFICATION
33 res.balance=0 ^
34 // RISK
35 8p.(p obeys preValidPurse !

p.balance=p.balancepre ^ res 6= p) ^
36 8o:preObject. 8 p obeys preValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p))
37

38 policy Pol_can_trade_constant
39 true
40 { any_code }

41 8 prs1,prs2 obeys preValidPurse.
CanTrade(prs1,prs2) ! CanTradepre(prs1,prs2)

42

43 policy Pol_protect_balance
44 // RISK
45 8 o,p:Object. p obeysValidPurse ^

MayAffect(o,p.balance) ! MayAccess(o,p)
46 }
47

48 abstract predicate CanTrade(prs1,prs2) is reflexive

Fig. 2. ValidPurse specification (contd.)

method call. Such a specification cannot be easily translated into one which does not
make use of this facility, as in:
(B) scr obeys ValidPurse ^ amt 2 N {res=this.deposit(amt,src)} res

(B) differs from (A) in that (B) requires us to establish that scr obeys ValidPurse
before making the call, while (A) does not.

2.4 Establishing Mutual Trust

An escrow must build a two-way, trusted transfer by combining one-way transfers.
From Pol_deposit_1 we obtain that the call res1=dest.deposit(amt, src) lets
us conclude res1^ dest obeysValidPurse! src obeysValidPurse. This trust is
just one way: from the destination to the source purse. We can establish mutual trust be-
tween two purses by then attempting to perform a second deposit in the reverse direction
from destination to source: res2=src.deposit(amt, dest) which in turn gives
res2^ src obeysValidPurse! dest obeysValidPurse. Reasoning conditionally,
on a path where res1 ^ res2 are true, we can then establish mutual trust:

dest obeys ValidPurse ! src obeys ValidPurse

We establish this formally in Section 3.4, having only argued informally earlier [17, 36].

7

As with much of our reasoning, this is both conditional and hypothetical: at a partic-
ular code point, when two deposit requests have succeeded (or rather, that they have
both reported success) then we can conclude that either both are trust worthy, or both
are untrustworthy: we have only hypothetical knowledge of the obeys predicate.

2.5 Escrow with Explicit Mutual Trust

1 method deal_version2() // returns Boolean
2 {
3 // setup and validate Money purses
4 escrowMoney = sellerMoney.sprout
5 res=escrowMoney.deposit(0, sellerMoney)
6 if (!res) then {return false}
7 res = buyerMoney.deposit(0, escrowMoney)
8 if (!res) then {return false}
9 res = escrowMoney.deposit(0, buyerMoney)

10 if (!res) then {return false}
11

12 // setup and validate Goods purses
13 // similar to lines 4�10 from above, but for Goods
14

15 // make the transaction
16 // as in lines 8�29 from Fig.1
17 }

Fig. 3. Revised deal_version2 method

Two way deposit calls are sufficient to establish mutual trust, but come with risks.
For example, as part of validating that a buyer’s purse the seller’s purse, we must pass
the buyer’s purse as an argument in a deposit call to the seller’s purse, e.g.
sellerMoney.deposit(0, buyerMoney)

If the seller’s purse is not in fact trustworthy, then it can take this opportunity to steal all
the money in the buyer’s purse before the transaction officially starts, even if the amt

that is supposed to be deposited is 0.
We can minimise this risk by careful use of escrow purses. Rather than mutually

validating buyers and sellers directly, we can create an escrow purse on the destination
side of the transaction (the seller’s money and the buyer’s goods) and then mutually
validate the buyer’s and sellers actual purses against the escrow — resulting in a chain
of mutual trust between the destination purse and the escrow purse, and the escrow
purse and the source purse. This allows us to hypothesise that the source and destination
purses are mutually trusting before we start on the transaction proper.

The resulting escrow method is in Figure 3. Line 4 creates a escrowMoney purse
and then lines 5–10 hypothetically establish mutual trust between the escrowMoney,
sellerMoney, and buyerMoney purses. The sellerMoney purse doesn’t need to val-
idate escrowMoney explicitly (sellerMoney.deposit(0,escrowMoney)) because

8

the sprout method specification says sprouted purses can trusted as much as their par-
ent purses. (Figure 4 illustrates the trust relationships.) If any of these deposit request

seller
Money

escrow
Money

buyer
Moneydeposit

(line 5)

deposit
(line 7)

deposit
(line 9)

sprout
(line 4)

Fig. 4. Establishing Mutual Trust. Dashed arrows show purse validation.

fail, we abort. Afterwards we do exactly the same, but for goods purses rather than
money purses. Finally, we carry out the escrow exchange itself, in exactly the same
manner as lines 8–29 of the first implementation in Figure 1.

2.6 Specifying the Mutual Trust Escrow
Figure 5 shows a specification for the revised escrow deal method from Figure 3.
This specification uses conditional and hypothetical reasoning to distinguish four cases,
based on the value of the result and the trustworthiness of the participants. We use these
auxiliary definitions:
GoodPrs= { p | p obeys pre ValidPurse }
PPrs= { sellerMoney, sellerGoods, buyerMoney, buyerGoods }
OthrPrs=GoodPrs \ PPrs
BadPPrs=PPrs \ GoodPrs

The set PPrs contains the four participant purses passed as arguments. BadPPrs con-
tains the untrustworthy participant purses. GoodPrs are all trustworthy purses in the
system that do conform to the ValidPurse specification, and OthrPrs are the trust-
worthy purses that do not participate in this particular deal. We can now discuss the four
cases of the policy:

1st case: The result is true and all participant purses are trustworthy. Then, the
goods and money purses can trade with each other, and there was sufficient money in
the buyer’s purse and sufficient goods in the sellers purse. In this case, everything is fine,
so the transfer can proceed: price will have been transferred from the buyer’s to the
seller’s money purse, and amt will have been transferred from the seller’s to the buyer’s
goods purse. No risk arises: no other purses’ balance will change (whether passed in to
the method or not).

2nd case: The result is false and all participant purses are trustworthy. Then one
or more of the functional correctness conditions are not satisfied: purses’ were unable
to trade with each other, or input purses did not have sufficient balance. Again, no risk
arises to any purses.

3rd case: The result is false and some participant purse is untrustworthy. In this
case, no trustworthy purses’ balances have been changed — unless they were already
accessible by an untrustworthy purse passed in to the method.

9

1 specification ValidEscrow {
2 fields sellerMoney, sellerGoods, buyerMoney, buyerGoods
3 fields price, amt // N
4

5 policy Pol_deal
6 price,amt2 N ^ price,amt>0
7 { this.deal() }

8 res ^ BadPPrs=; ! (// 1st case:
9 CanTrade(buyerMoney,sellerMoney) ^

10 CanTrade(buyerGoods,sellerGoods) ^
11 buyerMoney.balance=buyerMoney.balancepre�price ^
12 sellerMoney.balance=sellerMoney.balancepre+price^
13 buyerGoods.balance=buyerGoods.balancepre+amt ^
14 sellerGoods.balance=sellerGoods.balancepre�amt ^
15 8p:preOthrPrs. p.balance=p.balance.pre ^
16 8o:preObject,p:preGoodPrs.
17 (MayAccess(o,p) !MayAccess(o,p)pre))
18 ^
19 ¬res ^ BadPPrs=; ! (// 2nd case:
20 ¬(CanTrade(buyerMoney,sellerMoney) ^
21 CanTrade(buyerGoods,sellerGoods) ^
22 buyerMoney.balancepre � price ^
23 sellerGoods.balancepre � amt) ^
24 8p:preGoodPrs. p.balance=p.balance.pre ^
25 8o:preObject,p:preGoodPrs.
26 (MayAccess(o,p) !MayAccess(o,p)pre))
27 ^
28 ¬res ^ BadPPrs 6=; ! (// 3rd case:
29 8p:preGoodPrs. (p.balance=p.balance.pre _
30 9 bp2BadPPrspre.MayAccess(bp,p)pre) ^
31 8o:preObject,p:preGoodPrs.(MayAccess(o,p) !
32 (MayAccess(o,p)pre _9b2BadPPrspre.MayAccess(b,p)pre)))
33 ^
34 res ^ BadPPrs 6= ; ! (// 4th case:
35 buyerMoney obeysValidPurse ! sellerMoney obeysValidPurse ^
36 buyerGoods obeysValidPurse ! sellerGoods obeysValidPurse ^
37 8p:preOthrPrs. (p.balance=p.balance.pre _
38 9bp2 BadPPrspre.MayAccess(bp,p)pre) ^
39 8o:preObject,p:preGoodPrs. (MayAccess(o,p)!
40 (MayAccess(o,p)pre_9b2BadPPrspre.MayAccess(b,p)pre)))
41 }

Fig. 5. ValidEscrow specification

4th case: The result is true and some participant purse is untrustworthy — actually
at least two matching participant purses are untrustworthy. That is, a pair of matching
purses have coöperated to suborn the escrow and we cannot tell. Therefore, either both
money purses are untrustworthy, (as per line 35), or both goods purses are untrustwor-

10

thy, (as per line 36), or all four are bad. The risk is that an uninvolved trustworthy purse’s
balance can be changed if it was previously accessible from a bad purse. The first and
second cases correspond to a traditional specification, because traditional specifications
assume all objects are trustworthy. The third and fourth cases arise precisely because
we are explicitly modelling the trust and risk involved in an open system.

Discussion The 3rd and 4th case represent more of a risk than we would like: ideally
(as in the 2nd case) we’d hope nothing should have changed. But an escrow method
cannot undo a system that is already suborned — if one of the participant purses is
already benefiting from a security breach, passing that purse in to this method gives
it an opportunity to exercise that breach. On the other hand, the risk is contained: this
method cannot make things worse.

The 4th case does not prevent trustworthy participant purses from being modified,
to cater e.g., for the possibility that the two money purses are trustworthy, while the two
goods purses are not, in which case the money transaction will take place as expected,
while all bets are off about the goods transaction. We can give the stronger guarantee
for the 3rd case, because by the time the escrow starts making non-0 transactions it has
established that the purses in each pair are both either trustworthy or both not.

Most importantly (perhaps surprisingly) the return value of the method, res, does
not indicate whether the participants were trustworthy or not. A true result may be
returned in the 1st case (all purses trustworthy) as well as the 4th (some purses are un-
trustworthy). The return value indicates only whether the escrow attempted to complete
the transaction (returning true) or abort (returning false). This came as a surprise to
us (and to the escrow’s designers [31].) As with much of our reasoning around trust,
this leads to yet more conditional reasoning, which must be interpreted hypothetically.

Nevertheless, the return value does communicate a valuable guarantee to an honest
participant, whose money and goods purses are both trustworthy: If deal returns true,
then the exchange has taken place. Furthermore if it returns false, the exchange has
not taken place and with no more risk to the honest purses than existed before the call.
The ValidEscrow specification also gives a guarantee to other purse objects even if
they did not participate in the deal: dishonest purses can only change other purses’
balances if they had prior access to those other purses.

3 A Formal Model of Trust and Risk

In this section we provide an overview of our core programming language, Focal, our
specification language, Chainmail, and our Hoare logic. The Hoare logic uses four-
tuples because it includes an invariant that must be preserved during the execution of
a statement as well as a postcondition established afterwards. We also outline a key
step required to prove that deal_version2 meets the ValidEscrow specification:
we prove that two purses can establish mutual trust, and formally delineate the risk.
Many details are relegated to our technical report [18]; here we adopt its numbering for
definitions.

11

3.1 Focal

We define a small object oriented language, Focal (Featherweight Object Capability
Language, not to be confused with FOCAL [28]). Focal supports classes, fields and
methods. (Figures 1 and 3 are effectively examples of Focal.) Focal is memory-safe:
it does not allow addresses to be forged, or non-existent methods or fields to be called,
read or written. Focal is dynamically typed: it does not check that the arguments to a
method call or a field write are of the appropriate type either statically or dynamically:
similar to JavaScript, Grace, E, and Dart’s unchecked mode.

Modules, M , are mappings from class identifiers to Focal class definitions, and
from predicate identifiers to Chainmail assertions as described in section 3.2. The link-
ing operator ⇤ combines these definitions, provided that the modules’ mappings have
separate domains, and performs no other checks. This reflects the open world setting,
where objects of different provenance interoperate without a central authority. For ex-
ample, taking M

p

as a module implementing purses, and M

e

as another module imple-
menting the escrow, M

p

⇤M
e

is defined but M
e

⇤M
e

is not.
Focal enforces a weak form of privacy for fields; only the receiver may modify

these fields, and anybody may read them.
The operational semantics of Focal takes a module M and a runtime state � =

frame ⇥ heap and maps statements onto a new state �

0.

Definition 6 (Shape of Execution).
; : Module ⇥ state ⇥ Stmts �! state

Arising and Reachable Configurations Policies need to be satisfied in all configurations
(pairs of states and statements) which may arise during execution of the program. For
example, if a program contains a class which has field which is not exported, and where
this field is initialized to 0 by the constructor, and incremented by 3 in all method calls,
then in the arising configurations the value of this field is guaranteed to be a multiple
of 3. Thus, through the concept of arising configurations we can ignore configurations
which are guarantee not to arise.

To define arising configurations we need the concept of initial configuration, and
reachability. A configuration is reachable from some starting configuration if it is reached
during the evaluation of the starting configuration after any number of steps. We define
the function Reach : Module ⇥ state ⇥ Stmts �! P(state ⇥ Stmts) by cases on the
structure of the statements. Note that Reach(M ,�, stmts) is defined, even when the
execution should diverge. This is important, because it allows us to give meaning to
capability policies without requiring termination.
We then define Arising(M) as the set of runtime configurations which may be reached
during execution of some initial context (�0,stmts0).

Definition 7 (Arising and Initial configurations).
Init : Module �! P(state ⇥ Stmt)

Arising : Module �! P(state ⇥ Stmts)
Init(M) = { (�0,new c.m(new c’)) | c, c’ 2 dom(M),

where �0 = ((◆0,null),�0), and �0(◆) = (Object, ;) }
Arising(M) =

S
(�,stmts)2Init(M) Reach(M ,�, stmts)

12

3.2 Chainmail

Chainmail is a specification language where a specification is a conjunction of a set of
named policies. (Figures 2 and 5 are examples of Chainmail specifications.)

Chainmail policies are based on one-state assertions (A) and two-state assertions
(B). To express the state in which an expression is evaluated, we annotate it with a
subscript. For example, x > 1 is a one-state, and x

pre

� x

post

= 1 is a two-state as-
sertion. Validity of an assertion is defined in the usual manner, e.g. in a state � with
�(x) = 4 we have M,� |= x > 1. If we also have �

0(x) = 3, then we obtain
M ,�,�

0 |= x

pre

� x

post

= 1. Chainmail specifications may also express ghost in-
formation, which is not stored explicitly in the state � but can be deduced from it —
e.g. the length of a null-terminated string.

Policies can have one of the three following forms: 1) invariants of the form A,
which require that A holds at all visible states of a program; or 2) A { code } B, which
require that execution of code in any state satisfying A will lead to a state satisfying
B wrt the original state or 3) A { any_code } B which requires that execution of any
code in a state satisfying A will lead to a state satisfying B wrt the original state.

Definition 12 (Policies).
Policy ::= A | A {code} B | A {any_code} B

PolSpec ::= specification S { Policy

⇤ }

One-state assertions include assertions about expressions (such as , > e.t.c.) and
four additional assertions: Expr obeysSpecId to model trust, i.e. that an object confirms
to a specification; and MayAccess and MayAffect to model risk, i.e. whether one
object may access another, or alter a property. These are hypothetical, in that they talk
about the potential effects or behaviour of code: we cannot somehow evaluate their
truth-value when executing the program. The fourth assertion Expr :ClassId simply
tests class membership.

Validity of one-state assertions is expressed through the judgment M ,� |= A. The
key case is that some expression obeys a specification if it satisfies that specification’s
policies in all reachable configurations arising from the module.
(from Definition 13):

– M ,� |= e:C iff �(becM ,�

) #1= C.
– M ,� |= MayAffect(e, e0) iff there exist method m, arguments ā, state �

0, identi-
fier z, such that M ,�[z 7! becM ,�

], z.m(ā) ; �

0, and be0cM ,�

6= be0cM ,�#1,�
0 .

– M,� |= MayAccess(e, e’) iff there exist fields f̄, such that bz.f̄cM ,�[z 7!becM ,�] =
be’cM ,�

– M ,� |= e obeys PolSpecId iff
8 (�, stmts)2Arising(M). 8i2{1..n}. 8�0

, stmts0.
(�0

, stmts0)2 Reach(M,�, stmts) �! M,�

0[z 7! bec
�

] |= Policy
i

[z/this]
where z is a fresh variable in �

0, and where we assume that PolSpecId was defined
as specification PolSpecId { Policy1, ...Policy

n

}.

Two-state assertions allow us to compare properties of two different states. Validity
of two-state assertions M ,�,�

0 |= B is defined similarly to one-state assertions, using
cases. We can now define adherence to policy, M ,� |=

pol

Policy:

13

Definition 15 (Adherence to Policies).
– M ,� |=

pol

A iff M ,� |= A

– M ,� |=
pol

A {code}B iff
(M ,� |= A ^ M ,�, code ; �

0 �! M ,�,�

0 |= B)
– M ,� |=

pol

A {any_code} B iff
8code. ((�, code) 2 Arising(M) ^ M ,� |= A ^ M ,�, code ; �

0

�! M ,�,�

0 |= B)

3.3 Hoare Logic

The Hoare logic allows us to prove adherence to policies. In order to reflect that the code
to be verified is executed in an open system, and that it calls code whose specification
and trustworthiness is unknown to the code being verified, we use Hoare four-tuples
rather than Hoare triples, so that not only do they guarantee a postcondition holds after
execution of the code, but also guarantee that an invariant is preserved during execution
of the code. These invariants are critical to modelling risk, as they let us talk about the
absence of temporary but unwanted effects caused on objects during execution.

A Hoare four-tuple is either M ` A { stms } A

0 1 B (executing stms in any
state satisfying A will lead to a state which satisfies A0) or M ` A { stms } B

0 1 B

(executing stms in any state satisfying A will lead to a state where the relation of the
old and new state is described by B

0). Critically, both promise that the relation between
the initial state, and any of the intermediate states reached by execution of stms, will
maintain the invariant B. The execution of stmts may call methods defined in M , and
the predicates appearing in A, A0, B0, and B, may use predicates defined in M . When
M is implicit from the context, we use the shorthand ` A { stms } A

0 1 B.
In order to model open systems, we require that after linking any module with the

module at hand, the policy will be satisfied. As stated in [34], “A programmer should be
able to prove that his programs have various properties and do not malfunction, solely
on the basis of what he can see from his private bailiwick.”

Definition 16 (Validity of Hoare Four-Tuples).
M |= A { stms } B

0 1 B iff 8M 0
,�.

(�, _) 2 Arising(M ⇤M 0) ^ M ⇤M 0
,� |= A ^ M ⇤M 0

,�, stms ; res,�0

�!
M ⇤M 0

,�,�

0 |= B

0 ^ 8�002Reach(M,�, stmts). M ⇤M 0
,�,�

00 |= B

Figure 6 shows a selection of our Hoare rules. It starts with two familiar Hoare
Logic rules: In (VARASG) and (FIELDASG) the postconditions use the previous value
of the right-hand-side, and thus allow us to deduce, e.g. :

` this.f = 21 { this.f = 2 ⇤ this.f } this.f = 42 1 true.
(METH-CALL-1) is also familiar, as it reasons over method calls under the assumption
that the receiver obeys a specification S, and that the current state satisfies the precon-
dition of m as defined in S.

The remaining rules are more salient.
(METH-CALL-2) expresses the basic axiom of object-capability systems that “only

connectivity begets connectivity” [30]. It promises in the postcondition that the result
of the method call v cannot expose access to any object z that wasn’t accessible initially

14

(VARASG)

` true {v:=a } v = apre 1 true

(FIELDASG)

` true { this.f:=a } this.f = apre 1 true

(METH-CALL-1)
M (S) = spec S { Policy,A { this.m(par) } B,Policy

0 }
` x obeysS ^A[x/this,y/par] {v :=x.m(y) } B[x/this,y/par,v/res] 1 true

(METH-CALL-2)
B ⌘ 8z :pre Object. MayAccess(v,z)! (MayAccesspre(x,z) _ MayAccesspre(y,z))
B

0 ⌘ 8z,u :pre Object. (MayAccess(u,z)!
(MayAccesspre(u,z) _

((MayAccesspre(x,z) _MayAccesspre(y,z)) ^
(MayAccesspre(x,u) _MayAccesspre(y,u)))))

` true {v :=x.m(y) } B 1 B

0

(FRAME-METHCALL)
` A { v := x.m(y) } true 1 B

B ⌘ 8z.(MayAffect(z, A0)! B

0(z)) ^
8z.((MayAccess(x,z) _MayAccess(y,z) _New(z)) ! ¬B0(z))

` A ^A

0 {v:=x.m(y) } A

0 1 true

(CODE-INVAR-1)
M (S) ⌘ spec S { Policy, P, Policy

0 }
B ⌘ 8x.(x obeysS ! P [/x/this])
` true {stmts } true 1 B

(CODE-INVAR-2)

` e obeysS {stmts } true 1 epre obeysS

(CONS-2)
` A {stmts } B 1 B

00

A

0
, B

0 !M A, _
` A

0 {stmts } B

0!B 1 B

00

(CONS-3)
` A {stmts } B 1 B

0

A,B !M _, A0

` A {stmts } A

0 1 B

0

(CONS-4)
` A {stmts } A

0 1 B

0

A,A

0 !M B

` A {stmts } B 1 B

0

(SEQUENCE)
` A {s1 } B1 1 B

0 ` A2 {s2 } B2 1 B

0
A,B1 !M _, A2 B1, B2 !M B

` A {s1; s2 } B 1 B

0

Fig. 6. A selection of Hoare Logic rules; we assume that the module M is globally given

to the method call’s receiver x or argument y. Additionally, it also promises that, during
execution of the method, accessibility does not change, unless the participants (here z
and u) were accessible to the receiver and/or the argument before the call. Note that this
latter promise is made via the invariant (fourth) rather than the postcondition (third) part
of the Hoare-tuple. Note also that this rule is applicable even if we know nothing about
the receiver of the call: this rule and the invariants are critical to reasoning about risk.

(CODE-INVAR-1) allows reasoning under the hypothesis that an object o obeys its
specification S: in this case o can be trusted to act in accordance with S always.

(FRAME-METHCALL) also expresses an axiom of object-capability languages, namely
that in order to cause some visible effect, one must have access to an object able to per-

15

form the effect. Coupled with “only connectivity begets connectivity”, this implies that
a method can cause some effect only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).

The remaining rules each make use of the entailment judgement !
M

, which al-
lows converting back and forth between one-state and two-state assertions and comes
in number of flavours; the relevant ones are defined as follows.

Definition 19 (Entailment).

1. A,B !M A

0
, A

00 iff
8�,�0

. � |= A ^ �,�

0 |= B �! � |= A

0 ^ �

0 |= A

00

2. A,A

0 !M B iff
8�,�0

. � |= A ^ �

0 |= A

0 �! �,�

0 |= B

3. B,B

0 !M B

00 iff
8�,�0

,�

00
. �,�

0 |= B ^ �

0
,�

00 |= B

0 �! �,�

00 |= B

00

The rules (CONS-3) and (CONS-4) make use of the entailment judgement to allow
converting between one- and two-state postconditions during Hoare logic reasoning.
To reason across sequenced computations s1; s2, the (SEQUENCE) rule requires finding
a one-state assertion A2 that holds after s1 and is the precondition of s2. It uses the
entailment A,B1 !

M

_, A2 to require that s1’s execution guarantees A2, and the en-
tailment B1, B2 !

M

B to require that the combined execution of s1 and s2 guarantees
the top-level postcondition B.

Theorem 3 (Soundness of the Hoare Logic).
For all modules M , statements stms and assertions A, B and B

0 ,
If M ` A { stms } B

0 1 B, then M |= A { stms } B

0 1 B.

The theorem is proven in [18].
In summary, we have four ”code agnostic” rules — rules which are applicable regard-
less of the underlying code. Rules (FRAME-METHCALL) and (METH-CALL-2) express
restrictions on the effects of a method call. Normally such restrictions stem from the
specification of the method being called, but here we can argue in the absence of
any such specifications, allowing us to reason about risk even in open systems. Rules
(CODE-INVAR-1) and (CODE-INVAR-2) are applicable on any code, and allow us to
assume that an object which obeys a specification S, satisfies all policies from S, and
that the object, once trusted, will always be obeying S.

3.4 Proving Mutual Trust

We now use our Hoare Logic to prove the key steps of the escrow protocol, establishing
mutual trust and delineating the risk. Here we have space to show just one-way trust
between the escrow and seller in full: the remaining reasoning to establish mutual trust
is outlined in the technical report [18]. Figure 7 shows the Hoare tuple for the first state-
ment in method deal (line 4 from Figure 3). Lines 3-8 of Figure 7 describe the post-
condition in case escrowMoney indeed obeys ValidPurse, while lines 9-17 make
absolutely no assumption about the trustworthiness, or provenance, of escrowMoney.

16

1 true
2 { var escrowMoney := sellerMoney.sprout }
3 sellerMoneypre obeysValidPurse �!
4 (escrowMoney obeys ValidPurse ^
5 CanTrade(escrowMoney,sellerMoney) ^
6 escrowMoney.balance = 0 ^
7 8p 2pre GoodPrs. p.balancepre = p.balance ^
8 sellerMoney obeysValidPurse) ^
9 8p :pre GoodPrs.

10 (p.balancepre = p.balance _MayAccesspre(sellerMoney, p)) ^
11 8z :pre Object.
12 (MayAccess(escrowMoney, z) �!MayAccesspre(sellerMoney, z)) ^
13 8z, y :pre Object.
14 (MayAccess(z, y) �!
15 (MayAccesspre(z, y) _
16 MayAccesspre(sellerMoney, y)^
17 MayAccesspre(sellerMoney, z)))
18 1

19 true
20

Fig. 7. Hoare tuple for first step in deal

By Pol_sprout and (METH-CALL-1) we obtain that

(A)

sellerMoney obeys ValidPurse
{ escrowMoney := sellerMoney.sprout}

escrowMoney obeys ValidPurse ^ ...rest...

1

true

By application (CONS-2) on the above we obtain

(B)

true

{ escrowMoney := sellerMoney.sprout}
sellerMoney

pre

obeys ValidPurse !
(escrowMoney obeys ValidPurse ^ ...rest...)

1

true

To obtain line 8, we apply a basic framing rule ((FRAME-GENERAL) in [18]) and get
` ... { escrowMoney := sellerMoney.sprout } escrowMoney

pre

= escrowMoney 1 ...,
and then, in conjunction with (CODE-INVAR-2), (CONS-2) we also obtain that

(C)

true

{ escrowMoney := sellerMoney.sprout}
escrowMoney

pre

obeys ValidPurse ! escrowMoney obeys ValidPurse
1

...

We can then apply a conjunction rule ((CONJ) in [18]) on (B) and (C), and obtain the

17

postcondition as in 4-8.
To obtain 9-11, we will apply several of the code-agnostic rules. After all, here we can-
not appeal to the specification of sprout, as we do not know whether sellerMoney
adheres to ValidPurse. We start by application of (METH-CALL-2), and a conse-
quence rule ((CONS-1) in [18]):

(D)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8z. MayAccess(sellerMoney, z) ! MayAccess
pre

(sellerMoney, z)
By applying the fact that 8u, v, w, MayAccess(u, v)^MayAccess(v, w) ! MayAccess(u,w),
and conjunction and inference rules on (D), we get:

(E)

¬MayAccess(sellerMoney, p)
{ escrowMoney := sellerMoney.sprout}

true

1

8z. MayAccess(sellerMoney, z) ! ¬MayAccess(z, p)
By application of rule (CODE-INVAR-1), we obtain:

(F)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8p.(p obeys ValidPurse ! (8z.MayAffect(z, p.balance) ! MayAccess(z, p)))
Through a combination of (E) and (F) and application of conjunction, and application
of (FRAME-METH-CALL), we obtain that

(G)

¬MayAccess(sellerMoney, p)
{ escrowMoney := sellerMoney.sprout}

true

1

p obeys
pre

ValidPurse ! (p.balance = p.balance
pre

)
Now by applying (CONS-2) on (F), we obtain

(H)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8p. p obeys
pre

ValidPurse !
(p.balance = p.balance

pre

_ MayAccess(sellerMoney, p))
We now apply (CONS-1) from [18] to conjoin the invariant and postcondition, obtaining

(I)

true

{ escrowMoney := sellerMoney.sprout}
8p. p obeys

pre

ValidPurse !
(p.balance = p.balance

pre

_ MayAccess(sellerMoney, p))
1

true

Last, we obtain lines 11-12 from (METH-CALL-2). We also obtain lines 13-17 from
(METH-CALL-2), and (CONS-1) from [18].

18

4 Related Work

Object Capabilities and Sandboxes. Capabilities were developed in the 60’s by Den-
nis and Van Horn [10] within operating systems, and were adapted to the program-
ming languages setting in the 70’s [34]. Object capabilities were first introduced [30]
in the early 2000s, and much recent work investigates the safety or correctness of ob-
ject capability programs. Google’s Caja [33] applies sandboxes, proxies, and wrappers
to limit components’ access to ambient authority. Sandboxing has been validated for-
mally: Maffeis et al. [27] develop a model of JavaScript, demonstrate that it obeys two
principles of object capability systems and show how untrusted applications can be
prevented from interfering with the rest of the system.
JavaScript analyses. More practically, there are a range of recent analyses of JavaScript
[23, 5, 38, 26, 43] based on static analyses or type checking. Lerner et al. extend these
approaches to ensure browser extensions observe “private mode” [26], while Dimoulas
et al. [11] enforce explicit access policies. The problem posed by the Escrow example
is that it establishes a two-way dependency between trusted and untrusted systems —
precisely the kind of dependencies these techniques prevent.
Concurrent Reasoning Our Hoare logic invariants are similar to the guarantees in
Rely-Guarantee reasoning [22]. Deny-Guarantee [12] distinguishes between assertions
guaranteed by a thread, and actions denied to all other threads. Deny properties corre-
spond to our requirements that certain properties be preserved by all code linked to the
current module. Compared with our work, rely-guarantee and deny-guarantee assumes
coöperation: composition is legal only if threads adhere to their rely or deny properties
and guarantees. Our modules have to be robust and ensure that their invariants cannot
be affected by any arbitrary, uncertified, untrusted code.
Relational models of trust. Artz and Gil [4] survey various types of trust in computer
science generally, although trust has also been studied in specific settings, ranging from
peer-to-peer systems [2] and cloud computing [20] to mobile ad-hoc networks [9], the
internet of things [19], online dating [37], and as a component of a wider socio-technical
system [8, 45]. Considering trust (and risk) in systems design, Cahill et al.’s overview of
the SECURE project [6] gives a good introduction to both theoretical and practical issues
of risk and trust, including a qualitative analysis of an e-purse example. This project
builds on Carbone’s trust model [7] which offers a core semantic model of trust based
on intervals to capture both trust and uncertainty in that trust. Earlier Abdul-Rahman
proposed using separate relations for trust and recommendation in distributed systems
[1], more recently Huang and Nicol preset a first-order formalisation that makes the
same distinction [21]. Solhaug and Stølen [42] consider how risk and trust are related
to uncertainties over actual outcomes versus knowledge of outcomes. Compared with
our work, these approaches produce models of trust relationships between high-level
system components (typically treating risk as uncertainty in trust) but do not link those
relations to the system’s code.
Logical models of trust. Various different logics have been used to measure trust in
different kinds of systems. Some of the earliest work is Lampson et al.’s “speaks for”
and “says” constructs [24], clear precursors to our “ obeys ” but for authentication rather
than specifications. Murray [35] models object capability patterns in CSP, and applies
automatic refinement checking to analyse various properties in the presence of untrusted

19

components. Ries et al. [40] evaluate trust under uncertainty by evaluating Boolean
expressions in terms of real values. Carbone et al. [41] and Aldini [3] model trust using
temporal logic. Primiero and Taddeo [39] have developed a modal type theory that
treats trust as a second-order relation over relations between counterparties. Merro and
Sibilio [29] developed a trust model for a process calculus based on labelled transition
systems. Compared with ours, these approaches use process calculi or other abstract
logical models of systems, rather than engaging directly with the system’s code.
Verification of Object Capability Programs. Drossopoulou and Noble [13, 36] have
analysed Miller’s Mint and Purse example [30] by expressing it in Joe-E and in Grace
[36], and discussed the six capability policies as proposed in [30]. In [16], they proposed
a complex specification language, and used it to fully specify the six policies from [30];
uncovering the need for another four policies. More recently, [14] they have shown
how different implementations of the underlying Mint and Purse systems coexist with
different policies. In contrast, this work formalises the informal ideas from [17], pro-
poses Focal, which is untyped and modelled on Grace and JavaScript rather than Java;
a much simpler specification language Chainmail; the obeys predicate to model trust;
MayAccess and MayAffect to model risk; a full specification of the Escrow; and a
Hoare logic for reasoning about risk and trust, applied to the Escrow specification.

5 Conclusions and Further Work

In this paper we addressed the questions of specification of risk, trust, and reasoning
about such specifications. To answer these questions, we contributed:

– Hypothetical predicates obeys to model trust, MayAccess and MayAffect to
model risk, and their formal semantics.

– Open Assertions and Open Policies whose validity must be guaranteed, even when
linked with any other code.

– Formal models of Focal and Chainmail.
– Hoare four-tuples that make invariants explicit.
– A Hoare logic incorporating code agnostic inference rules.
– Formal reasoning to prove key steps of the Escrow Exchange.

In further work we will extend our approach to deal with concurrency, distribution,
exceptions, networking, aliasing, and encapsulation. Finally, we hope to develop auto-
mated reasoning techniques to make these kinds of specifications practically useful.

20

Bibliography

[1] A. Abdul-Rahman and S. Halles. A distributed trust model. In New Security
Paradigms Wkshp., 1988. Langdale, Cumbria.

[2] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system.
In CKIM, 2001.

[3] A. Aldini. A calculus for trust and reputation systems. In IFIPTM, 2014.
[4] D. Artz and Y. Gil. A survey of trust in computer science and the semantic web.

Journal of Web Semantics, 2007.
[5] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based defenses

against untrusted browser origins. In USENIX Security, 2013.
[6] Cahill et al. Using trust for secure collaboration in uncertain environments. Per-

vasive Computing, July 2003.
[7] M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic

networks. In SEFM, 2003.
[8] J.-H. Cho and K. S. Shan. Building trust-based sustainable networks. IEEE Tech.

and Soc., Summer, 2013.
[9] J.-H. Cho, A. Swami, and I.-R. Chen. A survey on trust management for mobile

ad hoc networks. IEEE Comms. Surv. & Tuts., 13(4), 2011.
[10] J. B. Dennis and E. C. V. Horn. Programming Semantics for Multiprogrammed

Computations. Comm. ACM, 9(3), 1966.
[11] C. Dimoulas, S. Moore, A. Askarov, and S. Chong. Declarative policies for capa-

bility control. In Computer Security Foundations Symposium, 2014.
[12] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.

In ESOP. Springer, 2009.
[13] S. Drossopoulou and J. Noble. The need for capability policies. In FTfJP, 2013.
[14] S. Drossopoulou and J. Noble. How to break the bank: Semantics of capability

policies. In iFM, 2014.
[15] S. Drossopoulou and J. Noble. Invited Talk: Towards Reasoning about Risk and

Trust in the Open World, 2014. slides from "http://www/doc.ic.ac.uk/~scd".
[16] S. Drossopoulou and J. Noble. Towards capability policy specification and verifi-

cation, May 2014. ecs.victoria.ac.nz/Main/TechnicalReportSeries.
[17] S. Drossopoulou, J. Noble, and M. S. Miller. Swapsies on the Internet. In PLAS,

2015.
[18] S. Drossopoulou, J. Noble, M. S. Miller, and T. Murray. More Reasoning about

Risk and Trust in an Open World. Technical Report ECSTR-15-08, VUW, 2015.
[19] L. Gu, J. Wang, and B. Sun. Trust management mechsnism for Internet of Things.

China Communications, Feb. 2014.
[20] S. M. Habib and M. M. Sebastian Ries and. Towards a trust management system

for cloud computing. In TrustCom, 2011.
[21] J. Huang and D. M. Nicol. A formal-semantics-based calculus of trust. IEEE

INTERNET COMPUTING, 2010.
[22] C. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.

[23] R. Karim, M. Dhawan, V. Ganapathy, and C.-C. Shan. An Analysis of the Mozilla
Jetpack Extension FrameworK. In ECOOP, Springer, 2012.

[24] B. Lampson, M. Abadi, M. Burrows, and E. Wobbler. Authentication in Dis-
tributed Systems: Theory and Practice. ACM TOCS, 10(4):265–310, 1992.

[25] B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16:613–615, 1973.

[26] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. Verifying web browser
extensions’ compliance with private-browsing mode. In ESORICS, Sept. 2013.

[27] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isolation of untrusted
web applications. In Proc of IEEE Security and Privacy, 2010.

[28] R. Merrill. focal: new conversational language. DEC, 1969.
homepage.cs.uiowa.edu/j̃ones/pdp8/focal/focal69.html.

[29] M. Merro and E. Sibilio. A calculus of trustworthy ad hoc networks. Formal
Aspects of Computing, page 25, 2013.

[30] M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. PhD thesis, Baltimore, Maryland, 2006.

[31] M. S. Miller, T. V. Cutsem, and B. Tulloh. Distributed electronic rights in
JavaScript. In ESOP, 2013.

[32] M. S. Miller, C. Morningstar, and B. Frantz. Capability-based financial instru-
ments: From object to capabilities. In Financial Cryptography. Springer, 2000.

[33] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Safe active content in
sanitized JavaScript. code.google.com/p/google-caja/.

[34] J. H. Morris Jr. Protection in programming languages. CACM, 16(1), 1973.
[35] T. Murray. Analysing the Security Properties of Object-Capability Patterns.

D.Phil. thesis, University of Oxford, 2010.
[36] J. Noble and S. Drossopoulou. Rationally reconstructing the escrow example. In

FTfJP, 2014.
[37] G. Norcie, E. D. Cristofaro, and V. Bellotti. Bootstrapping trust in online dating:

Social verification of online dating profiles. In Fin. Crypt. & Data Sec., 2013.
[38] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety: Type-

based verification of JavaScript sandboxing. In USENIX Security, 2011.
[39] G. Primiero and M. Taddeo. A modal type theory for formalizing trusted commu-

nications. J. Applied Logic, 10, 2012.
[40] S. Ries, S. M. Habib, M. M. Sebastian Ries and, and V. Varadharajan. Certain-

logic: A logic for modeling trust and uncertainty. In TRUST, 2011. LNCS 6740.
[41] Roberto Carbone et al. Towards formal validation of trust and security in the

Internet of services. In Future Internet Assembly, 2001. LNCS 6656.
[42] Solhaug and Stølen. Uncertainty, subjectivity, trust and risk: How it all fits to-

gether. In STM, 2011.
[43] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated

Analysis of Security-Critical JavaScript APIs. In SOSP, 2011.
[44] The Swapsies. Got Got Need. In 5: A February Records Anniversary Compilation.

February Records, 2015.
[45] M. Walterbusch, B. Martens, and F. Teuteberg. Exploring trust in cloud comput-

ing: A multi- method approach. In ECIS, page 145, 2013.

22

More Reasoning about Risk and Trust in an Open Word
(Appendix)

Sophia Drossopoulou1, James Noble2, Mark Miller3, Toby Murray4,
1Imperial College London, 2Victoria University Wellington, 3Google Inc, 3NICTA and UNSW.

1. Introduction
This is the companion appendix to our work “Reasoning
about Risk and Trust in an Open World”. We give here
the full definitions of Focal, Chainmail, our Hoare logic,
prove soundness of our Hoare logic, and then prove that our
escrow exchange implementation establishes mutual trust
while managing risk.

2. Formal Definition of the language Focal
2.1 Modules and Linking
Focal modules map class identifiers to class descriptions,
function identifiers to function descriptions, and predicate
identifiers to predicate descriptions - we require implicitly
for any module M , class identifier c, function identifier f,
and predicate identifier P, that that M (c) 2 ClassDescr

or undefined, that M (f) 2 FunDescr or undefined, and
M (P) 2 PredDescr or undefined.

Definition 1 (Modules).

Module = ClassId �! ClassDescr
Specification = (FunId [PredId [SpecId) �!

(FuncDescr [PredDescr [Specification)

We define linking of modules, M ⇤M 0, to be the the union
of their respective mappings, provided that the domains of
the two modules are disjoint:

Definition 2 (Linking and Lookup). Linking of modules M
and M’ is
⇤ : Module⇥Module �! Module

M ⇤M’ =

⇢
M ⇤

aux

M’, if dom(M)\dom(M’)=;
? otherwise.

(M ⇤
aux

M’)(c) =

⇢
M(id), if M (id) is defined
M’(id) otherwise.

Classes We define the syntax

Definition 3 (Classes, Methods, Args). We define the synatx
of modules below.

ClassDescr ::= class ClassId
{ (fld FieldId)⇤ (methBody)⇤ }

methBody ::= method m (ParId⇤)
{ Stmts ; return Arg }

Stmts ::= Stmt | Stmt ; Stmts
Stmt ::= var VarId := Rhs

| VarId := Rhs
| this.FieldId := Rhs
| if Arg then Stmts else Stmts
| skip

Rhs ::= Arg.MethId(Arg⇤) | Arg
| new ClassId(Arg⇤)

Arg ::= Path | true | false | null
Path ::= ParId | VarId | this

| Path. FieldId

Note that Focal supports a limited form of protection:
the syntax supports reading of fields of any object, but re-
stricts each object to being able to modify only its own fields.

Method Lookup We define the method lookup function,
M which returns the corresponding method definition given
a class and a method identifier.

Definition 4 (Lookup). The lookup function
M(M , c, m) = methodm (p1, ...pn) { stms; return a}

iff M (c) = class c{ ...
methodm (p1, ...pn) { stms; return a}

...} .
undefined, otherwise.

2.2 Execution of Focal
Runtime state The runtime state � consists of a stack
frame �, and a heap �. A stack frame is a mapping from
receiver (this) to its address, and from the local variables
(VarId) and parameters (ParId) to their values. Values are
integers, the booleans true or false, addresses, or null. Ad-
dresses are ranged over by ◆. The heap maps addresses to
objects. Objects are tuples consisting of the class of the ob-
ject, and a mapping from field identifiers onto values.

ECSTR-15-08 1 2015/10/20

(METHCALL_OS)
bac

�·� = ◆

ba
i

c
�·� = val

i

8i 2 {1..n}
M(M ,�(◆) #1, m) =

methodm(par1, . . . parn) { stms; return a

0}
�

00
= this 7! ◆, par1 7! val1, . . . parn 7! val

n

M , �

00 · �, stmts ; �

0 · �0

M , � · �, a.m(a1, . . . an) ; �

0
, ba0c

�

0·�0

(ARG_OS)

M , � · �, a ; �, bac
�·�

(NEW_OS)
◆ is new in �

f1, ...fn are the fields defined in CId

M , � · �, newC (a1, ...an)
; �[◆ 7!(C , f17!ba1c�,�...fn7!ba

n

c
�,�

)], ◆

(VARASG-1_OS)
M , � · �, e ; �

0
, val

M , � · �, var v :=e ; �[v 7! val] · �0

(VARASG-2_OS)
M , � · �, e ; �

0
, val

M , � · �, v :=e ; �[v 7! val] · �0

(FIELDASG_OS)
M , � · �, e ; � · �0

, val

M , � · �, this.f := e ; � · �0
[�(this), f 7! val]

(SEQUENCE_OS)
M , �, stmt ; �

00

M , �

00
, stmts ; �

0

M , �, stmt ; stmts ; �

0

(COND-TRUE_OS)
bac

�

= true

M , �, stmts1 ; �

0

M , �, if a then stmts1 else stmts2 ; �

0

(COND-FALSE_OS)
bac

�

= false

M , �, stmts2 ; �

0

M , �, if a then stmts1 else stmts2 ; �

0

(SKIP_OS)

M , �, skip ; �

Figure 1. Operational Semantics - done

� 2 state = frame ⇥ heap
� 2 frame = StackId �! val
� 2 heap = addr �! object
v 2 val = { null, true, false } [addr [N
object = ClassId ⇥ (FieldId �! val)
◆, ◆

0
, .. 2 addr

StackId = { this } [VarId [ParId

The Operational Semantics of Focal We define bac
�

, the
interpretation of an argument a 2 Arg in a state � as
follows.

Definition 5 (Interpretation). For a state � = (�,�) we
define

bxc
�

= �(x) (for x 2 StackId)

btruec
�

= true

bfalsec
�

= false

bx.fc
�

= �(bxc
�

)(f)

bx.fs.fc
�

= �(bx.fsc
�

)(f)

Here fs is a non-empty .-separated list of FieldIds.

Execution uses module M , and maps a runtime state �

and statements stmts (respectively a right hand side rhs)
onto a new state �0 (respectively a new heap �

0 and a value).
We therefore do not give execution rules for things like null-
pointer-exception, or stuck execution. This allows us to keep

the system simple; it will be easy to extend the semantics to
a fully-fledged language.

Definition 6. Execution of Focal statements and expres-
sions is defined in figure 2.2, and has the following shape:
; : Module ⇥ state ⇥ Stmts �! state
; : Module ⇥ state ⇥ Rhs �! heap ⇥ val

Arising and Reachable Configurations Policies need to
be satisfied in all configurations which may arise during exe-
cution of some program. This leads us the concept of arising
configuration. Arising configurations allow us to restrict the
set of configurations we need to consider. For example, in a
program where a class does not export visibility to a field,
the constructor initialises the field to say 0, and all method
calls increment that field, the arising configurations will only
consider states where the field is positive.

A configuration is reachable from another configuration,
if the former may be required for the evaluation of the latter
after any number of steps.

Reach : Module ⇥ state ⇥ Stmts

�! P(state ⇥ Stmts)

In figure 2 we define the function Reach by cases on the
structure of the expression, and depending on the execu-
tion of the statement. The set Reach(M ,�, stmts) collects
all configurations reachable during execution of �, stmts.

ECSTR-15-08 2 2015/10/20

Note that the function Reach(M ,�, stmts) is defined, even
when the execution should diverge. This is important, be-
cause it allows us to give meaning to capability policies with-
out requiring termination.

We then define Arising(M) as the set of runtime con-
figurations which may be reached during execution of some
initial context (�0,stmts0). A context is initial if its heap
contains only objects of class Object.

Definition 7 (Arising and Initial configurations). We define
the mappings

Init : Module �! P(state ⇥ Stmt)

Arising : Module �! P(state ⇥ Stmts)

as follows:
Init(M) = { (�0,new c.m(new c’)) | c, c’ 2 dom(M)

where �0 = ((◆,null),�0),

and �0(◆) = (Object, ;) }
Arising(M) =

S
(�,stmts)2Init(M) Reach(M ,�, stmts)

Initial configuration should be as “minimal” as possible,
We therefore construct a heap which has only one object,
and execute a method call on a newly created object, with
another newly created object as argument.

3. The Specification Language Chainmail
Our specifications and policies are fundamentally two-state
assertions. To express the state in which an expression is
evaluated, we annotate it with a t-subscript. For exam-
ple, given � and �

0 where �(x)=4, and �

0
(x)=3, we have

M ,�,�

0 |= x

pre

� x

post

= 1.

Expressions and Assertions We first define expressions,
Expr, and assertions A, which depend on one state only.
We allow the use of mathematical operators, like + and �,
and we use the identifier f to indicate functions whose value
depends on the state (eg the function length of a list). We
use the identifier sR to indicate predicates whose validity
depends on the state (eg the predicate Acyclic for a list).

The difference between expressions and arguments is that
expressions may express ghost information, which is not
stored explicitly in the state � but can be deduced from it
— e.g. the length of a list that is not stored with the list.

Definition 8 (Expressions).

Expr ::= Arg | Val | Expr + Expr | ...
| f(Expr⇤)
| if Expr then Expr else Expr

funDescr ::= function f(ParId⇤) { Expr }
We now define the values of such expressions, and the

validity of one-state assertions as follows:

Definition 9 (Interpretations). We define the interpretation
of expressions, b·c : Expr ⇥Module ⇥ state ! Value

using the notation b·cM ,�

:

• bvalcM ,�

= val, for all values val 2 Val .

• bacM ,�

= bac
�

, for all arguments a 2 Arg .
• be1 + e2 cM ,�

= be1 cM ,�

+ be2 cM ,�

.
• bf (e1 , ...en)cM ,�

= bExpr [e1/p1 , ...en/pn]cM ,�

where M (f) = function f (p1 ...pn) { Expr } ,
undefined, otherwise.

• bif e0 then e1 else e2 cM ,�

=b e1 cM ,�

, if b e0 cM ,�

=true,
=b e2 cM ,�

, if b e0 cM ,�

=false.
and undefined, otherwise.

One-state assertions We now define a language of asser-
tions which depend on one state. We introduce three specific
predicates: MayAffect and MayAccess which we use to
model risk, the assertion Expr :ClassId which expresses
class membership, and the assertion Expr obeysSpecId .
The two former predicates are hypothetical, in that they
talk about the potential effect of execution of code, or of
the existence of paths to connect two objects. In particular,
the MayAffect predicate ascertains whether its first param-
eter may execute code which affects the second one, while
MayAccess predicates ascertains whether its first parameter
has any path to the second one.

Definition 10 (One-state Assertions).

A ::= Expr | R(Expr⇤)
| Expr � Expr | A ^ A | ...
| 9x.A | 8x.A | ...
| Expr:ClassId
| MayAffect (Expr,Expr)
| MayAccess(Expr,Expr)
| Expr obeys SpcId

PredDescr ::= predicate R(ParId⇤) { A }

Two state assertions Two-state assertions allow us to com-
pare properties of two different states, and thus say, e.g. that
p.balance

post

= p.balance
pre

+10. To differentiate be-
tween the two states we use the subscripts pre and post.

Definition 11 (Two-state Assertions).

t ::= pre | post | ✏

B ::= At
| Exprt � Exprt | ...
| New(Expr)
| B ^ B | ...
| 9x.B | 8x.B .

Given the syntax from above, we can express assertions like
8p.p :

pre

Purse.

p.bank =

pre

RBS ! p.balance
pre

= p.balance
post

,
to require that the balance of any Purse belonging to
RBS is immutable across the to states. Notice that for leg-
ibility, for infix predicates (such as = or :) we annotate the
predicate application rather than the assertion, e.g. we write
p.bank=

pre

RBS to stand for (p.bank=RBS)
pre

.

ECSTR-15-08 3 2015/10/20

Reach(M ,�, v:=new c(a1, ...an)) = { (v:=new c(a1, ...an) ,�), (skip,�0
)}

where M ,�, v:=new c(a1, ...an) ; �

0

Reach(M ,�, stmt; stmts) = Reach(M ,�, stmt) [Reach(M ,�

0
, stmts)

where M ,�, stmt ; �

0

Reach(M ,�, v:=a) = {(v:=a,�), (skip,�0
)}

where M ,�, v:=a ; �

0

Reach(M ,�, v:=a.m(a1, ...an)) = { (v:=a.m(a1, ...an) ,�), (skip,�000
) } [Reach(M ,�

0
, stmts)

where � = � #1, and �

0
= (this 7! ba1c�, x1 7! ba

n

c
�

..x

n

7! ba
n

c
�

),�)

and M(M ,�(ba1c�) #1, m) = ...(stmts; returna) and
M ,�

0
, stmts ; �

00 and �

000
= (� #1 [v 7! bac

�

00
],�

00 #2)
Reach(M ,�, skip) = { (skip,�) }
Reach(M ,�, if a then stmts1 else stmts2) = { (if a then stmts1 else stmts2,�), } [Reach(M ,�, stmts”)

where stmts” = stmts1 if bac
�

= true, otherwise stmts” = stmts2

Figure 2. Reachable Configurations

Policies are expressed in terms of one-state assertions A,
A

0, etc. and two state assertions B, B00 etc.
Policies can have one of the three following forms: 1) in-

variants of the form A, which require that A holds at all vis-
ible states of a program; or 2) A { code } B, which require
that execution of code in any state which satisfies A will
lead to a state which satisfies B wrt the original state; or 3)
A {any_code}B which, similar to two state invariants, re-
quires that execution of any code in a state which satisfies A
will lead to a state which satisfies B.

Definition 12 (Policies).
Policy ::= A | A {code} B | A {any_code} B

PolSpec ::= spec SpcId { Policy

⇤ }
.

Validity of one-state, two-state assertions, and policies
We first defined validity of one-state assertions:

Let � = (�,�) be a state. Then write �[v 7!◆] as short-
hand for (�[v 7!◆],�).

Definition 13 (Validity of one-state assertions – MayAffect
and MayAccess). We define the validity an assertion A:

|= ✓ Module ⇥ state ⇥Assertion

using the notation M ,� |= A:

•
M ,� |= e iff becM ,�

= true.
•
M ,� |= R(e1 , ...en) iff
M ,� |= R[e1/p1 , ...en/pn]

where M (P) = predicate P (p1 ...pn) { A } ,
undefined, otherwise.

•
M ,� |= e1 � e2 iff be1 cM ,�

� be2 cM ,�

.
•
M ,� |= A1 ^A2 iff M ,� |= A1 and M ,� |= A2 .

•
M ,� |= 9x.A iff for some address ◆ and some fresh
variable z 2 VarId , we have M ,�[z 7! ◆] |= A[z/x]

•
M ,� |= 8x.A iff for all addresses ◆2 dom(�), and fresh
variable z, we have M ,�[z 7! ◆] |= A[z/x].

•
M ,� |= e:C iff �(becM ,�

) #1= C.

•
M ,� |= MayAffect(e, e0) iff there exists method m,
arguments ā, state �

0, identifier z, such that M ,�[z 7!
becM ,�

], z.m(ā) ; �

0, and be0cM ,�

6= be0cM ,�#1,�
0 .

•
M ,� |= MayAccess(e, e’) iff there exist fields f1,...
f
n

, such that bz.f1...fncM ,�[z 7!becM ,�] = be’cM ,�

.
•
M ,� |= e obeys PolSpecId iff

8 (�, stmts)2Arising(M). 8i2{1..n}.
8�0

, stmts0. (�0
, stmts0)2Reach(M,�, stmts).

M,�

0
[z 7! bec

�

] |= Policy
i

[z/this]

where z is a fresh variable in �

0, and where we assume
that PolSpecId was defined as
specification PolSpecId { Policy1, ...Policy

n

},

We now define validity of two state assertions, ...

Definition 14 (Validity of Two-state assertions). We define
the judgment

|= ✓ Module⇥ state⇥ state⇥ TwoStateAssertion

using the notation M ,�,�

0 |= B as follows
•
M ,�,�

0 |= At iff M ,�

00 |= A,
where �

00
= � if t=pre, and �

00
= �

0 otherwise.
•
M ,�,�

0 |= et � e0t’, iff becM ,�1 � be0cM ,�2 ,
where �1 = � if t=pre, and �1 = �

0 otherwise,
and �2 = � if t0=pre, and �2 = �

0 otherwise.
•
M ,�,�

0 |= New(e) iff becM ,�

0 2 dom(�

0
) \ dom(�)

•
M ,�,�

0 |= B1 ^ B2 iff
M ,�,�

0 |= B1 and M ,�,�

0 |= B2.
•
M ,�,�

0 |= 9x.B iff for some address ◆ and fresh vari-
able z, we have M ,�[z 7! ◆],�

0
[z 7! ◆] |= B [z/x].

•
M ,�,�

0 |= 8x.B iff M ,�[z 7! ◆],�

0
[z 7! ◆] |= B [z/x]

holds for all addresses ◆2 dom(�), and fresh variable z.

For example, for states �1, �2 where bx.balancec
�1 = 4

and bx.balancec
�2 = 14, we have

M ,�1,�2 |= x.balance
post

= x.balance
pre

+ 10.
We now define adherence to policy, M ,� |=

pol

Policy,
which ensures that the requirements of Policy are satisfied in
any context arising from M .

ECSTR-15-08 4 2015/10/20

Definition 15 (Adherence to Policies).
•
M ,� |=

pol

A iff M ,� |= A

•
M ,� |=

pol

A {code}B iff
(M ,� |= A ^ M ,�, stmts ; �

0

�! M ,�,�

0 |= B)

•
M ,� |= A {any_code} B iff

8code.(�, code) 2 Arising(M) ^M ,� |= A

^ M ,�, stmts ; �

0

�! M ,�,�

0 |= B)

In order to model open systems, require that after linking
any module with the module at hand, the policy will be
satisfied. As stated in [3], "A programmer should be able to
prove that his programs have various properties and do not
malfunction, solely on the basis of what he can see from his
private bailiwick." For example, to express that M5 satisfies
EscrowSpec we need to allow any possible implementation
of Purse as well as any other code to be linked, and still
ensure that the Escrow policies are satisfied.

Definition 16 (Classes adhering to Specifications).

•
M |=

pol

ClassId obeys PolSpecId iff
8M 0

,�.(�, _) 2 Arising(M ⇤M 0
).

M,� |=
pol

o : ClassId ! o obeys PolSpecId

4. Hoare Logic
We define the Hoare Logic that allows us to prove adherence
to policies. In order to reflect that the code to be verified is
executed in an open system, and that it calls code whose
specification and trustworthiness is unknown to the code
being verified, we augment the Hoare triples, so that not only
do they guarantee some property to hold after execution of
the code, but also guarantee that some property is preserved
during execution of the code.

A Hoare tuple in our system has either the format
M ` A { stms } A

0 1 B,
or the format

M ` A { stms } B

0 1 B,
The former promises that execution of stms in any state
which satisfies A will lead to a state which satisfies A’. The
latter promises that execution of stms in any state which
satisfies A will lead to a state where the relation of the old
and new state is described by B. Both the former and latter
tuples also promise that the relation between the initial state,
and any of the the intermediate states reached by execution
of stms will be described by B.

The execution of stmts may call methods defined in
M , and the predicates appearing in A, A’, and B, may use
predicates as defined in M . When the module M is implicit
from the context we use the shorthand ` A { stms } A

0 1

B.
As is usual in many Hoare logics [1] we introduce logical

variables into our assertions. We assume that these have
the form var, var’, and that they come from a separate

domain. We also assume that there exists a function Lvars,
which returns all the logical variables within an assertion.
For example Lvars(p1.balance = var) = { var }. 1

Definition 17 (Validity of Hoare Tuples).

•
M |= A { stms } A

0 1 B iff
Lvars(A) = Lvars(A0

) = { var } ^ 8M 0
,�, val.

(�, _) 2 Arising(M ⇤M 0
)

^ M ⇤M 0
,�[var 7! val] |= A

^ M ⇤M 0
,�, stms ; �

0

�!
M ⇤M 0

,�

0
[var 7! val] |= A

0

^
8�002Reach(M,�, stmts). M ⇤M 0

,�,�

00 |= B

•
M |= A { stms } B

0 1 B iff
Lvars(A) = Lvars(A0

) = { var } ^ 8M 0
,�, val.

(�, _) 2 Arising(M ⇤M 0
)

^ M ⇤M 0
,�[var 7! val] |= A

^ M ⇤M 0
,�, stms ; �

0

�!
M ⇤M 0

,�[var 7! val],�

0
[var 7! val] |= B

0

^
8�002Reach(M,�, stmts). M ⇤M 0

,�,�

00 |= B

Note that the definition from above does not support the
use of logical variables in the invariant part of the tuple, B.
Even though it would have been possible to accommodate
for this in our formal model, it would slightly complicate the
expositions, and so far we have not found a need to do that.

4.1 Hoare Rules
We define the Hoare rules in figure 3 for the language con-
structs, while in figure 4 we give the rules for framing, the
rules for consequence, and rules about invariants preserved
during execution of a statement.2

We first consider the rules from figure 3: The rules
(VARASG) and (FIELDASG) are not surpising. The anno-
tations _

pre

and _
post

explain the use of a
pre

, and allow us
to talk in the postcondition about values in the pre-state. For
example, we would obtain
true

{ this.f=this.f+3}
this.f = this.f

pre

+ 3

1

true

.

The rules (COND-1) and (COND-2) describe conditional
statements, and are standard.

The rule (METH-CALL-1) describes method call. 3

1 Make sure we have said earlier that valstands for a value.Just noticed that
I sometimes uses v for variables, and some times for values. Arghh
2 Notice that we have no rule for object creation; these would like rules for
method calls; while they do not pose special challenges, they would increase
the size of our system and we leave this to further work.
3 We have no invariant part in the spec of a method, but it would not be
difficult to extend the system to support this.

ECSTR-15-08 5 2015/10/20

(VARASG)

` true {var v:=a } v = a
pre

1 true

` true { v:=a } v = a
pre

1 true

(FIELDASG)

` true { this.f:=a } this.f = a
pre

1 true

(COND-1)
A !M cond

` A { stmts1 } B 1 B

0

` A { if cond then stmts1 else stmts2 } B 1 B

0

(COND-2)
A !M ¬cond
` A { stmts2 } B 1 B

0

` A { if cond then stmts1 else stmts2 } B 1 B

0

(SKIP)

` A { skip } A 1 true

(METH-CALL-1)
M (S) = spec S { Policy, A { this.m(par) } B,Policy

0 }
` x obeysS ^A[x/this, y/par] { v := x.m(y) } B[x/this, y/par, v/res] 1 true

(METH-CALL-2)
B ⌘ 8z :

pre

Object. MayAccess(v, z) ! (MayAccess
pre

(x, z) _ MayAccess
pre

(y, z))

B

0 ⌘ 8z, u :

pre

Object. (MayAccess(u, z) !
(MayAccess

pre

(u, z) _
((MayAccess

pre

(x, z) _MayAccess
pre

(y, z)) ^
(MayAccess

pre

(x, u) _MayAccess
pre

(y, u)))))

` true { v := x.m(y) } B 1 B

0

(FRAME-METHCALL)
` A { x.m(y) } true 1 8z.(MayAffect(z, A0

) ! B

0
(z)) ^

8z.((MayAccess
pre

(x, z) _MayAccess
pre

(y, z) _New(z)) ! ¬B0
(z))

` A ^A

0 { x.m(y) } A

0 1 true

(SEQUENCE)
` A { stmts1 } B1 1 B

0 ` A2 { stmts2 } B2 1 B

0
A,B1 !M true, A2 B1, B2 !M B

` A { stmts1; stmts2 } B 1 B

0

Figure 3. Hoare Logic – Basic rules of the language – we assume that the module M is globally given

On the other hand, rule (METH-CALL-2) is unusual in
a Hoare logic setting; it expresses that “only connectiv-
ity begets connectivity” . The terms was coined by Mark
Miller and is used widely in the capabilities literature. To
our knowledge, this property has not been expressed in a
Hoare logic. The reason, is, we believe, that Hoare logics so
far have been developed with the closed world assumption,
in the sense that all methods (or functions) called come from
code which has a specification, and which has been verified.

The rule (FRAME-METHCALL) is also unusual; note that
its precondition is true. This means that we make no as-
sumptions about the receiver of the method call; this allows
us to reason in an open setting. Even though we do not know
what the behaviour method m will be, we still have some
conditions which can guarantee that A’ will be preserved.
These conditions are that anything that was accessible from

the receiver x or argument of z at the time of the method
call, or anything that is newly created during execution of
the method body, does not satisfy the prerequisites neces-
sary to affect A’.4

The last rule in figure 3 is (SEQUENCE). It requires that
the precondition and the postcondition of the first statements,
i.e.A and B1, imply the precondition of the second state-
ments, ie A2, and that the combined effects described by
the two-state assertion in the postconditions of stmts1 and
stmts2, B1 followed by B2, imply the postcondition of the
sequence, i.e.B.

The standard entailment, i.e.A !M A

0, guarantees that
any state which satisfies A also satisfies A0. We extend the
notion to cater for two state assertions, and have three new

4 Notes that �0 2Reach(M,�,stmts) is a shorthand for �0.(�0, _0) 2
Reach(M,�,stmts).

ECSTR-15-08 6 2015/10/20

(FRAME-GENERAL)
` A { stmts } B 1 B

0

A !M stmts#A

0
A !M stmts##A

00

` A ^A

0 { stmts } B ^A

0 1 B

0 ^A

00

(CONJ)
` A1 { stmts } B1 1 B3

` A2 { stmts } B2 1 B4

` A1 ^A2 { stmts } B1 ^B2 1 B3 ^B4

(CONS-1)
` A { stmts } B 1 B

0
A

0 !M A

B !M B

00
B

0 !M B

000

` A

0 { stmts } B

00 ^B

0 1 B

000

(CONS-2)
` A { stmts } B 1 B

00

A

0
, B

0 !M A, true

` A

0 { stmts } B

0 ! B 1 B

00

(CONS-3)
` A { stmts } B 1 B

0

A,B !M true, A

0

` A { stmts } A

0 1 B

0

(CONS-4)
` A { stmts } A

0 1 B

0

A,A

0 !M B

` A { stmts } B 1 B

0

(CODE-INVAR-1)
M (S) ⌘ spec S { Policy, P, Policy

0 }
` true { stmts } true 1 8x.(x obeysS ! P [this/x])

(CODE-INVAR-2)

` e obeysS { stmts } true 1 e

pre

obeysS

Figure 4. Hoare Logic – we assume that the module M is globally given

forms of entailment, described in Definition 18. The require-
ment A,B1 !M true, A2 guarantees that for any pair of
states if the former states satisfies A and the two together sat-
isfy B1, then the second state will also satisfy A2, c.f. Defi-
nition 18.3. The requirement B1, B2 !M B guarantees for
any three states, if the first two together satisfy B1, and the
second and third together satisfy B2, then the first and third
will satisfy B, c.f. Definition 18.5. For example, with 18.3
we have x = 5, x

post

= x+2 !M true, x = 7, while with
18.5 we have x

post

= x+4, x
post

= x+2 !M x
post

= x+6

for any module M .

Definition 18 (Entailment).

1. A !M A

0 iff
8�. M ,� |= A !M ,� |= A

0

2. B !M B

0 iff
8�,�0. M ,�,�

0 |= B !M ,�,�

0 |= B

0

3. A,B !M A

0
, A

00 iff
8�,�0

. � |= A ^ �,�

0 |= B �! � |= A

0 ^ �

0 |= A

00

4. A,A0 !M B iff
8�,�0

. � |= A ^ �

0 |= A

0 �! �,�

0 |= B

5. B,B

0 !M B

00 iff
8�,�0

,�

00
. �,�

0 |= B ^ �

0
,�

00 |= B

0 �! �,�

00 |= B

00

We now turn our attention to the structural rules from
figure 4.

Rule (FRAME-GENERAL) allows us to frame onto a tuple
any assertion that has not been affected by the code. . For
this, we need two notions of some code being disjoint from
an assertion:

Definition 19 (Disjointness).

•
M ,� |= stms##A iff
M ,� |= A ^ 8�0 2 Reach(M , stmts,�).M ,�

0 |= A.
•
M ,� |= stms#A iff
M ,� |= A ^ M ,�, stms ; �

0 ! M ,�

0 |= A.

For example x=7# x:=x+1; x:=x-1 holds for all states
and modules, but x=7## x:=x+1; x:=x-1 never holds. In
general, framing is an undecidable problem, but we can
prove some very basic properties, eg that assignment to a
variable does not affect all other variables, nor other paths.
Note, that in order to express this property we are making
use of logical variables.

Lemma 1. For all modules M , and states �,
• If x and y are textually different variables, then
M ,� |= x=a## y := a’.

• If x is not a prefix of the path p, then
M ,� |= p.f=a## x := a’ .

• If M ,� |= stms##A then M ,� |= stms#A.

The rule (CONJ) allows us to combine different Hoare
tuples for the same code, and follows standard Hoare logics.

Interestingly, our system has four rules of consequence.
The fist rule, (CONS-1), is largely standard, as it allows us to
strengthen the precondition A, and weaken the postcondition
B, and invariant B0. A novelty of this rule, however, is that
it allows the invariant to be conjoined to the postcondition;
this is sound, because the invariant is guaranteed to hold
throughout execution of the code, and thus also after it.

For (CONS-1) we use the entailment A !M A

0, which
guarantees that any state which satisfied A also satisfies A0,

ECSTR-15-08 7 2015/10/20

and that of the form B !M B

0 which guarantees that any
pair of states which together satisfy B also satisfy B

0. This
is described in Definition 18.

The next rule, (CONS-2), is unusual, in that it allows us
to weaken the precondition, while adding a hypothesis B0 to
the postcondition, such that the original postcondition, B, is
only guaranteed if B0 holds. The rule is sound, because we
also require that the new precondition A

0 together with the
new postcondition B

0 guarantee that the original precondi-
tion holds in the pre-state. The judgment A,B !M A

0
, A

00

is defined in in Definition 18. For example, we can use this
rule to take
p1 obeys Purse

{ p2:=p1.sprout}
p2 obeys Purse

1

true

and deduce that
true

{ p2:=p1.sprout}
p1

pre

obeys Purse ! p2 obeys Purse

1

true

.

The next two rules, (CONS-3) and (CONS-4), allow us to
swap between tuples where the postcondition is a one-state
assertion, i.e.` A { stms } A

0 1 B

0 and that where the
postcondtion is a one state assertion, i.e.` A { stms } B 1 B

0.
The following lemma is an example entailment.

Lemma 2. For all modules M :
MayAccess(x, y)^MayAccess(y, z) !M MayAccess(x, z).

The two last rules in 4 are concerned with adherence to
specification.

The rule (CODE-INVAR-1) expresses that throughout ex-
ecution of any code, in all intermediate states, for any vari-
able x for which we know that it obeys a specification S, we
know that it satisfies any of S’s stated policies.

The rule (CODE-INVAR-2) guarantees that any term e

which has been shown to be pointing to an object which
obeys a specification S will continue satisfying the specifi-
cation throughout execution of any stms.

4.2 Soundness
We first demonstrate that judgments made in the context of
a module are preserved when we link a larger module. In
lemma 3, we state that entailment is preserved by linking:

Lemma 3.

•
A !M A

0 implies that A !M⇤M 0
A

0.
•
B !M B

0 implies that B !M⇤M 0
B

0

•
A,A

0 !M B implies that A,A

0 !M⇤M 0
B

•
B,B

0 !M B

00 implies that B,B

0 !M⇤M 0
B

00

In lemma 1 we state that derivability and validity of Hoare
tuples is preserved for larger modules

Theorem 1 (Linking preserves derivations and validity).
For all modules M , M 0.

• If M ` A { stms } A

0 1 B , then
M ⇤M 0 ` A { stms } A

0 1 B.
• If M |= A { stms } A

0 1 B, then
M ⇤M 0 |= A { stms } A

0 1 B

We now define what it means for a method body, and a
class definition to adhere to its specification

We say that a method m defined a class C adheres to is
specification,

M ` C, m

if we able to show that the body of m when executed in a state
that satisfies A, the difference between the initial and final
state is described by B, and will preserve B’, where A and
B’ and B are the method’s pre, postcondition, and invariant.
Moreover, we say that a class adheres to its specification

M ` C

of all its methods adhere to their specification. Finally, a
module adheres to its specification,

M ` M

if all the classes in M adhere to their specifications.

Definition 20 (Proving code’s adherence to specification).

•
M ` C, m iff
for all method identifiers m, and for all A and B

0 such
that Spec(M , C) = S and
M (S) = spec S { Policy, A { this.m(par) } B,Policy

0 }
we can prove that
M ` A ^ this obeysS { stmts } B[a/res] 1 true

and where the method body for m C is defined in M as
method m(par) { stmts; return a } .

•
M ` C iff M ` C, m

for all methods from C
•
M ` M iff
M ` C for all classes C from M

Below we are defining and proving the soundness of our
Hoare logic. Note that we do not require that M ` M , be-
cause we do not model object creation. If we had object cre-
ation in our system, we would have needed that requirement,
and the proof of soundness would have required slightly
more complex proof techniques such as a generation lemma,
or double induction.

Theorem 2 (Soundness of the Hoare Logic). For all mod-
ules M , code stms and assertions A, A0 and B and B

0 ,
• If M ` A { stms } A

0 1 B

then M |= A { stms } A

0 1 B.
• If M ` A { stms } B

0 1 B

then M |= A { stms } B

0 1 B.

Proof. Fix the module M . Then, the proof proceeds by in-
duction on the judgement M ` _ { _ } _ 1 _, which is in-
ductively characterised by the rules of Figure 3 and Figure 4.
We have one case to consider, for each of the rules.

ECSTR-15-08 8 2015/10/20

Case (VARASG), (FIELDASG), (COND-1) and (COND-2) all
follow trivially from the operational semantics of Focal;
the latter two cases also require application of the induc-
tion hypothesis.

Case (METH-CALL-1) follows from the definition of Hoare
tuple validity (Definition 17) and that of the obeys predicate
(see Definition 13).

Case (METH-CALL-2) expresses the basic axiom of object-
capability systems that “only connectivity begets connec-
tivity” [2], and follows from the operational semantics of
Focal and the definitions of validity for the MayAccess
predicate (see Definition 13).

Case (FRAME-METHCALL) Is similar to (METH-CALL-2)
in that it expresses a basic axiom of object-capability lan-
guages, namely that in order to cause some visible effect,
one must have access to an object able to perform the
effect. Coupled with “only connectivity begets connec-
tivity”, this implies that a method can cause some effect
only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).

Case (SEQUENCE) follows from the definition of
Reach(M,�, code1; code2) and the definition of va-
lidity of Hoare tuples (Definition 17).

Case (FRAME-GENERAL) Follows by the definition of #

and ## .
Case (CONS-1) follows from the definition of entailment

(Definition 18) and the fact that
(�, stms) 2 Reach(M,�, stms).

Case (CONS-2) follows because �,�

0 |= Q

0 ! Q if and
only iff �,�0 |= Q assuming �,�

0 |= Q

0.
Case (CONS-3) and (CONS-4) follow straightforwardly from

the definition of entailment and Hoare tuple validity.
Case (CODE-INVAR-1) follows because the definition of

policy satisfaction for one-state-assertions A requires that
A holds for all internally-reachable states �0 via Reach.

Case (CODE-INVAR-2) follows straightforwardly from the
definition of Hoare tuple validity and 2-state-assertion
validity.

⇤

5. Proof of Escrow:deal
We now outline the most salient steps from the proof of the
Escrow. Note that out formally defined language does not
support returning from the inside of a method - we did this to
simplify the Hoare rules. Therefore, in Figure 5 we re-write
the mothod deal so that it obeys this syntactic restriction.

5.1 Preliminaries
We first create some admissible rules, useful for our reason-
ing.

Firstly, because logical variables cannot be assigned to,
we have that ` var { stmts } true 1 var = var

pre

for
any stmts; therefore, the following rules are admissible

for any logical variable var, and specification S:
(CODE-INAVR-3)

` var obeysS { code } true 1 var obeysS

Similarly, through application of (FRAME-GENERAL),
if z 6= x, we get ` z = var { x:=rhs } z = var 1 true,
which also gives that ` true { x:=rhs } z = z

pre

1 true.
Then, by (CODE-INVAR-2) and (CONS-1) we obtain that

(OBEYS-INVAR)
z 6= x

` z obeysS { x:=rhs } true 1 z obeysS

5.2 First Step
The pre and postconditions for the first line from the code, ie
for line 4 from Figure 5 are described in figure 6. Drawing on
the Pol_sprout policy of the ValidPurse specification,
this step is obtained as follows:

Firstly, by application of (OBEYS-IVAR) and (CONS-4)
we obtain
(0)

true

{ escrowMoney := sellerMoney.sprout}
sellerMoney

pre

obeys ValidPurse !
sellerMoney obeys ValidPurse

1

true

.
Then, from the specification of sproutin ValidPurse, and
the rule (METH-CALL-1) we obtain that
(1)

sellerMoney obeys ValidPurse
{ escrowMoney := sellerMoney.sprout}

escrowMoney obeys ValidPurse ^
CanTrade(escrowMoney, sellerMoney) ^
8 p :

pre

GoodPrs.p.balance = p.balance
pre

1

true

Then,

from (1), and application of (CONS-2), we obtain
(2)

true

{ escrowMoney := sellerMoney.sprout}
sellerMoney

pre

obeys ValidPurse !
(escrowMoney obeys ValidPurse ^
CanTrade(escrowMoney, sellerMoney) ^
8 p 2

pre

GoodPrs. p.balance = p.balance
pre

)

1

true

Also, by application of (CODE-INVAR-1), and the specifica-
tion of ValidPurse, we have that

ECSTR-15-08 9 2015/10/20

1 method deal()
2 {
3 //setup and validate Money purses
4 escrowMoney := sellerMoney.sprout
5 res := escrowMoney.deposit(0, sellerMoney)
6 if res then {
7 res := buyerMoney.deposit(0, escrowMoney)
8 if res then {
9 res := escrowMoney.deposit(0, buyerMoney)

10 if res then {
11 // set up and validate Goods purses
12 escrowGoods := buyerGoods.sprout
13 res := escrowGoods.deposit(0, buyerGoods)
14 if res then {
15 res := sellerGoods.deposit(0, escrowGoods)
16 if res then {
17 res := escrowGoods.deposit(0, sellerGoods)
18 if res then {
19 // start the actual exchange
20 res := escrowMoney.deposit(price, buyerMoney)
21 if res then {
22 res := escrowGoods.deposit(amt, sellerGoods)
23 if res then{
24 // transfer from the two escrows to two accounts
25 sellerMoney.deposit(price, escrowMoney)
26 buyerGoods.deposit(amt, escrowGoods)
27 } else {
28 // undo the transaction
29 buyerMoney.deposit(price, escrowMoney)
30 }
31 } else skip
32 } else skip
33 } else skip
34 } else skip
35 } else skip
36 } else skip
37 }
38 return res
39 }

Figure 5. Revised deal method expressed without return statements

1 true
2 { var escrowMoney := sellerMoney.sprout }
3 sellerMoneypre obeysValidPurse �! (escrowMoney obeysValidPurse ^
4 CanTrade(escrowMoney,sellerMoney) ^
5 escrowMoney.balance = 0 ^
6 8p 2pre GoodPrs.p.balancepre = p.balance ^
7 sellerMoney obeysValidPurse) ^
8 8p :pre GoodPrs.(p.balancepre = p.balance _ MayAccesspre(sellerMoney, p)) ^
9 8z :pre Object. (MayAccess(escrowMoney, z) �! MayAccesspre(sellerMoney, z)) ^

10 8z, y :pre Object. (MayAccess(z, y) �!
11 (MayAccesspre(z, y) _ MayAccesspre(sellerMoney, y) ^MayAccesspre(sellerMoney, z))
12 1

13 true
14

Figure 6. Hoare tuple for first step in deal

(3)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8 p 2
pre

GoodPrs, o : Object.

(MayAffect(o, p.balance) ! MayAccess(o, p))

By application of (METH-CALL-2) and (FRAME-METH-CALL)
and (3) we obtain

ECSTR-15-08 10 2015/10/20

(4)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8 p 2
pre

GoodPrs

(p.balance = p.balance
pre

_
MayAccess

pre

(sellerMoney, o))

Finally, by application of (METH-CALL-2) we obtain
(5)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8z, y :

pre

Object. (MayAccess(z, y) �!
(MayAccess

pre

(z, y) _
MayAccess

pre

(sellerMoney, y)^
MayAccess

pre

(sellerMoney, z))

By application of (CONS-1), and (CONJ) on (0), (2), (4),
and (5), we obtain the pre-postconditions from Figure 5.

5.3 Second Step
The pre and postconditions for the second step are described
in figure 7. The main differences between figures 6 and
7 are a reflection of the differences between the policies
Pol_sprout and Pol_deposit_1 and Pol_deposit_2

in the ValidPurse specification. Functionally, deposit
may succeed or fail, indictated by its return value res, while
sprout always succeeds; deposit may change the bal-
ances of participant purses, while sprout may not.

Crucially for us, the trust essentially the same in both
cases:
src obeys preValidPurse^ CanTrade(this,src)pre

and the risk is very similar — slightly more complex for
deposit which may modify the two purses:
8p.(p obeys preValidPurse^p/2 {this,src} !

p.balance=p.balancepre)^
but otherwise may not increase risk:
8o:preObject.8p obeys preValidPurse.MayAccess(o,p)!

MayAccesspre(o,p))

Thus, the reasoning for this step can be justified in similar
ways to those that from figure 6.

5.4 Step 1 and Step 2 Establish Mutual Trust
When we combine step 1 and step 2 we obtain the Hoare
tuple from figure 8. Here we make use of the results from fig-
ure 6 and figure 7, and combine them through the (SEQUENCE)
rule. For example, we use our invariants entailment �!M ,
whereby for any module M :
8z :

pre

Object. (MayAccess(escrowMoney, z) !
MayAccess

pre

(sellerMoney, z)),

8z :

pre

Object. (MayAccess(sellerMoney, z) !
MayAccess

pre

(escrowMoney, z)),

�!M

true,
8z :

pre

Object. (MayAccess(escrowMoney, z) !
MayAccess

pre

(sellerMoney, z)).

These two steps combined prove that we have now es-
tablished mutual trust between these two purses. This is ex-
pressed in line 4 of figure 8:
res �!
sellerMoneypre obeysValidPurse

 ! escrowMoney obeysValidPurse
The bulk of the proof proceeds similarly, with lines 6-18 of
figure 5 requiring the same reasoning to establish the remain-
ing mutual trust relationships, first by including the remain-
ing money purse, and then between all the goods purses.

Finally lines 20-30 complete the escrow exchange by
exchanging money and goods. The core reasoning here is
completely straightforward, as trust is already established
between all concerned purses — although of course we also
have to handle the cases where trust is not established, on
paths where a deposit call fails. We have to continue to
reason about the risk, but since only deposit and sprout

calls are involved, this reasoning is no different to that of the
first and second step.

References
[1] T. Kleymann. Hoare Logic and VDM: Machine-checked sound-

ness and completeness proofs. PhD thesis, The University of
Edinburgh, 1998.

[2] M. S. Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Balti-
more, Maryland, 2006.

[3] J. H. Morris Jr. Protection in programming languages. CACM,
16(1), 1973.

ECSTR-15-08 11 2015/10/20

1 true
2 { res=escrowMoney.deposit(0, sellerMoney) }
3 escrowMoneypre obeysValidPurse �! (8p 2pre GoodPrs.p.balancepre = p.balance)
4 escrowMoneypre obeysValidPurse ^ res ! (sellerMoney obeysValidPurse^
5 8p :pre GoodPrs.(p.balancepre = p.balance _ MayAccesspre(sellerMoney, p)) ^
6 8z :pre Object. (MayAccess(escrowMoney, z) �! MayAccesspre(escrowMoney, z)) ^
7 8z, y :pre Object. (MayAccess(z, y) �!
8 (MayAccesspre(z, y) _ MayAccesspre(sellerMoney, y) ^MayAccesspre(sellerMoney, z))
9 1

10 true
11

Figure 7. Hoare tuple for second step in deal

1 true
2 { var escrowMoney := sellerMoney.sprout
3 res := escrowMoney.deposit(0, sellerMoney) }
4 res �! sellerMoneypre obeysValidPurse ! escrowMoney obeysValidPurse ^
5 sellerMoneypre obeysValidPurse �! (CanTrade(escrowMoney,sellerMoney) ^
6 escrowMoney.balance = 0 ^
7 8p 2pre GoodPrs.p.balancepre = p.balance ^
8 sellerMoney obeysValidPurse) ^
9 ¬res �! ¬(sellerMoneypre obeysValidPurse) ^

10 8p :pre GoodPrs.(p.balancepre = p.balance _ MayAccesspre(sellerMoney, p)) ^
11 8z :pre Object. (MayAccess(escrowMoney, z) �! MayAccesspre(sellerMoney, z)) ^
12 8z :pre Object. (MayAccess(sellerMoney, z) �! MayAccesspre(sellerMoney, z)) ^
13 8z, y :pre Object. (MayAccess(z, y) �!
14 (MayAccesspre(z, y) _ MayAccesspre(sellerMoney, y) ^MayAccesspre(sellerMoney, z))
15 1

16 true
17

Figure 8. Hoare tuple for first and second step in deal

ECSTR-15-08 12 2015/10/20

	Reasoning about Risk and Trust in an Open Word

