
The Ecology of Computatio n
B.A. Huberman (editor)
© Elsevier Science Publishers B.V. (Nor th-Holland) , 1988

Incentive Engineering
for Computational Resource Management

K. Eric Drexler
MIT Artificial Intelligence Laboratory,
545 Technology Square, Cambridge, MA 02139*

Mark S. Miller
Xerox Palo Alto Research Center,

3333 Coyote Hill Road, Palo Alto, CA 94304

231

Agoric computation [I,II] will require market-compatible mechanisms for the alloca

tion of processor time and storage space. Recasting processor scheduling as an

auction process yields a flexible priority system. Recasting storage management as

a system of decentralized market negotiations yields a distributed garbage collection

algorithm able to collect unreferenced loops that cross trust boundaries. Algorithms

that manage processor time and storage in ways that enable both conventional com

putation and market-based decision making will be useful in establishing agoric

systems: they lie at the boundary between design and evolution. We describe such

algorithms in some detail.

1. Introduction
In the agoric model of computation [II], market mechanisms - prices and negotiations

coordinate the activity of objects. As in existing markets, these mechanisms will allocate

resources in a decentralized fashion, guided by local knowledge and decisions rather than by

central planning and direction. Through selective rewards, markets will encourage the evolu

tion of useful and efficient objects.

This model raises questions at several levels, ranging from foundations (how can hard

ware and software support secure market mechanisms?) to high-level emergent properties
(how will evolved computational markets behave?). Here we focus on a question at an inter

mediate level, asking how the basic computational resources of processor capacity and data

storage can be managed in a market-compatible fashion, given suitable foundations . We first

examine objectives and constraints for decentralized resource management, and then describe

a promising set of initial market strategies. These are algorithms that can help seed a system

• Visiting Scholar, Stanford Univers!ty. Box 60775, Palo Alto, CA 94306

232 K.E. Drexler and M.S. Miller

with a workable initial set of objects. Initial market strategies (or initial strategies, for short),

must be compatible with current programming practice and (when widely used) must provide

an environment in which resources typically have prices that reflect costs-that is, an environ

ment in which other objects can make economic decisions that make sense.

1.1. The role of initial market strategies

Agoric systems will evolve from lesser to greater complexity. To begin evolving, they will

need a comparatively simple structure from which to build. The role of initial market strategies

is to serve as a sort of scaffolding: they must support the right things and have the right

general shape, but they must also be replaceable as construction proceeds. Though they must

embody sound engineering principles, they need not themselves be architectural wonders.

For computation to occur, storage and processing power must be allocated and managed

functions that existing algorithms handle [1,2]. To get a computational market started, we will

need initial strategies that also enable market-based decision making. To enable conventional

computation, the use of an initial strategy by a set of objects must ensure the reliable sched

uling of processes and allocation and deallocation of storage. To enable globally-sensible,

market-based decision making, the use of an initial strategy by a set of objects must provide

an environment in which the price of using an object reflects the real cost of that use.

These initial market strategies, however, cannot use price information to guide their own

actions. To behave reliably in a conventional computational sense, they must pursue their

goals regardless of cost. If resource prices are to make economic sense, however, objects at

some level (perhaps contracting with systems of initial-strategy objects) must be willing to

forgo or delay actions which will cost more than their estimated worth. Initial market strate

gies exist to provide an environment in which more advanced market strategies can function

and evolve (even evolving to replace the initial strategies themselves).

Initial programming environments can provide initial market strategies as default parts of

object definitions. Though initial strategies will perform functions ordinarily handled by an

operating system or language environment, they need not be foundational or uniform across a

system. The foundational mechanisms of agoric systems will delegate decisions regarding

processor scheduling and storage management to unprivileged objects, enabling them to fol

low diverse policies. Initial strategies will simply provide policies that work, until better poli

cies emerge.

The initial market strategies described here are intended to serve two purposes: first, to
provide a proof-of-concept (or at least evidence-of-concept) for the feasibility of decentralized

resource management meeting the constraints we describe; and second, to provide a point of

departure for further work-a set of ideas to _crit\cize and improve upon. For several of our

choices, straightforward alternatives can likely be found. Many will prove superior.

Throughout the present discussion, "object" should be considered a scale-independent

notion: an object should frequently be regarded as a large, running program, such as an expert

system or on-line database. Large objects may or may not be themselves composed of ob

jects, and objects in general need not incorporate any notion of class hierarchy or inheritance.

Computational Resource Managem ent 233

Some of the following algorithms have relatively high overhead and are not proposed for use

with small objects; large objects might use conventional algorithms for fine-grained internal

resource management.

1.2. Auction-based processor scheduling

Most objects will need only a fraction of the service of a processor, hence we expect rental

to emerge as a major means of acquiring processor time. Since objects will frequently be able

to trade off processor use against storage requirements, communications use, or service quali
ty, processor time will have a price relative to these other resources. This price will vary from

processor to processor and from moment to moment. If an agoric system is open, extensible,

and uses real currency, and if machine owners are alert, then the long-term average price of

processor time in the system will reflect the external market price of adding more processors

to the system - if it were much higher, the owners could profit by adding processors; if it

were much lower, they could profit by removing and selling them.

Since the demand for processor time is apt to fluctuate rapidly, proper incentives will re

quire rapidly fluctuating prices. This can be arranged by auctioning each slice of processor

time to the highest-bidding process. The urgency of a task can be reflected in the size of its
bid. Auctions can also be used to schedule other resources allocated on a time-slice by time

slice basis, such as communication channels. Again, fluctuating prices can provide incentives

for delaying less urgent tasks, leveling loads, and so forth.

In discussing the allocation of processing resources, we describe the allocation of raw pro

cessor time. Some objects in an agoric system might not purchase time this way, but might

instead purchase interpretation services on a similar (or very different) basis. A system that

can provide a market in raw processor time can serve as a foundation for more sophisticated

services of this sort.

1.3. Rent-based storage management

Because storage needs will frequently be transient, we expect that rental from owners will

emerge as a major means of holding storage. As with processor time, storage will have a price

relative to other resources, and this price will vary across different media, locations, and
times. As with processors, the long-term average price of storage in the system will reflect the

external market price of adding more storage to the system, if owners are alert to opportunities

for profit. We discuss allocation of raw storage space here, but a system that can provide a

market in raw space can serve as a foundation for more sophisticated storage services.

The basic idea of our initial strategy and the emergent garbage collection algorithm is as

follows:

• Landlords own storage space.

• They charge other objects rents at a rate determined through auction.

• Referenced objects (consultants) charge referencing objects (clients) retainer fees, using

these to pay their rent (and the retainer fees charged by their consultants).

• When objects fail to pay rent they are evicted (that is, garbage collected).

234 K.E. Drexler and M.S. Miller

These arrangements provide a natural way to free storage from unproductive uses . If an
object cannot or will not pay its rent, then some other object must be bidding more for the
available space (if no object was bidding for the space, its price would be zero). Since an
object's income (and hence rent-paying ability) reflects the value placed on the object by its
users, eviction of non-paying objects will typically improve the overall usefulness of the
contents of storage.

Frequently-used consultants will be able to pay their rent out of their usage fees. Rarely
used (but referenced) consultants can charge their clients retainer fees adequate to cover their
rent (and that of any consultants they themselves retain). In these relationships, pointers are

bi-directional: a consultant also knows its clients. Unreferenced objects will be unable to earn
usage fees or charge retainer fees; they will be unable to pay, and will be evicted, thereby ac
complishing garbage collection (or forcing migration to a fixed-entry-price archive). This is

the basis of the market sweep approach to garbage collection.

Rent-based storage management also allows a generalization of pointer types. Some sys
tems distinguish between the traditional strong pointers and weak pointers [3]. A strong
pointer retains a referenced object regardless of the cost: it represents an unbounded commit
ment to maintaining access. A weak pointer maintains access as long as the object has not
been garbage collected, but does not itself cause the object to be retained. Weak pointers are
an existing step toward economic storage management: they represent a small value placed on
access-in effect, an infinitesimal value. This suggests a generalization in which an object
will pay only a bounded amount for continued access to an object. This may be termed a
threshold pointer. Thresholds may be set in various ways, for example, by limiting the total
retainer fee that will be paid, or the total fee that will be paid in a given time period. When
multiple threshold pointers reference an object, their strengths add; thus, they integrate infor
mation about the demand for retaining the object in a given region of storage. (As we will see,
however, any situation in which a consultant asks retainer fees from multiple clients presents
a challenge in incentive engineering-why should a client pay, if others will do so instead?)

Differing rents in differing media give objects an incentive to migrate to the most cost
effective locations. If clients offer a premium for fast service and demand service frequently, a
consultant might best be located in RAM; if slow service is adequate and demand is low, a
consultant might best be located on disk, or on a remote server. Caching decisions can thus be

treated as a business location problem.

Rent-based storage management solves a standing problem of distributed garbage collec
tion. Consider a loop of objects, each pointing to the next, each on a different company's ma

chine, and all, collectively, garbage. Garbage collection could be accomplished by migrating
objects to collapse the loop onto one machine, thus making its unreferenced nature locally
visible [4]. But what if the companies don't fully trust one another? By sending the representa
tion of an object to an untrusted machine, the algorithm would allow encapsulation to be vio
lated, giving away access to critical objects and resources. With rent-based storage manage
ment, however, migration is unnecessary: since unreferenced loops have no net income but

still must pay rent, they go broke and are evicted.

Computational Resource Management 235

The problem of unreferenced loops crossing trust boundaries highlights the lack of a

notion of payment-for-service in traditional approaches to storage management. Introducing

this notion seems essential when hardware and data are separately owned. In its absence, dis

tributed systems will be subject to problems in which one person (or entity) forces the reten

tion of another's storage but has no incentive to free it.

As suggested earlier, we do not expect explicit rental arrangements to be economical for

very small objects. The appropriate minimum scale is an open question; the ultimate test of

answers to this question will be market success.

1.4. Design constraints

As we have noted, initial market strategies must satisfy various constraints, which fall into

two classes. First, they must result in a programmable system; this can most easily be guaran

teed by ensuring that they meet the familiar constraints that have evolved in systems program

ming practice. Second, they must result in a system with market incentives, making possible

the evolution of the new programming practices expected in agoric open systems.

Systems programming constraints often guarantee some property regardless of cost-for

example, guaranteeing that referenced objects will be retained. Sound market incentives re

quire that all resources used be paid for, since to do otherwise in an evolving system would

foster parasitism. These two constraints would seem to be in conflict. To resolve this, we

introduce the notion of the well-funded object. An object is well-funded if it has immediate

access to ample funds to pay for the computations it spawns. A well-funded object might

typically represent a human user and fund some computations serving that user. These com

putations are required to satisfy traditional systems programming constraints only so long as

the well-funded object remains solvent, that is, so long as the user is willing to pay their cost.

The chief systems-programming constraint in processor scheduling is that processes be

scheduled-that is, that there be a way to arrange bidding such that a well-funded process can

be guaranteed non-starvation and hence eventual execution. The chief market-compatibility

constraints in processor scheduling are that processor prices fluctuate to adjust demand to the

available supply, that objects be able to make scheduling decisions based on price informa

tion, and that opportunities for malicious strategies be limited-for example, that a process

not be able to force a high price on a competing process while avoiding that high price itself.

Several systems-programming constraints are important in storage management. First,

non-garbage-everything reachable by a chain of strong pointers leading from a well-funded

object-must not be collected. Second, garbage-everything that is unreferenced and cannot

induce other objects to reference or pay it-should eventually be collected. Finally, overhead

costs should be reasonable: bookkeeping storage per object should be bounded and the com

putational burden of the algorithms should scale roughly linearly (at most) with the number of

objects.

Market-compatibility constraints are also important in storage management. Objects should

manage retainer-fee relationships such that there is an incentive for clients to pay retainers, lest

there be an incentive to shirk. A consultant's total retainer fees (which amount to a price for its

236 K.E . Drexler and M.S. Miller

availability) should reflect real storage costs, to provide non-initial-strategy clients with area

sonable basis for decisions. Finally, objects should not require unbounded cash reserves to

avoid improper garbage collection.

Non-initial-strategy objects need not themselves meet system-programming constraints,

since they are free to act in any manner that furthers their market success. They will still typi

cally require reasonable computational costs, smooth interaction with other strategies, and

bounded cash reserves . A complex market-level object, however, will be unlikely to point

strongly at an object having unpredictable or uncontrollable costs. It must therefore be pre

pared for such consultants to go away. It may also spawn low-priority processes; some of

these may never run.

How can a complex object be prepared for loss of access? Current practice already pro

vides many examples of objects able to deal with the unexpected unavailability of objects they

use. Programs are frequently prepared for the breaking of inter-machine or inter-process con

nections, or for the inability to open an expected file. Files are commonly updated so that they

are in a recoverable state even if they should suffer the sudden loss of the updater. Argus pro

vides abortable transactions and exception handling [III]. Additional recovery mechanisms can

be expected among complex objects in a market environment.

2. Processor scheduling
This section describes initial market strategies for both sellers and buyers. In processor

scheduling , we will term the time-seller (or agent for the seller) an auction house, and a time

buyer (or agent for a buyer) a bidder. A system may have any number of competing sellers.

2.1. Auctioning processor time: the escalator algorithm

A standard approach to scheduling processes uses a "first-come, first-served" queue. A

newly-ready process always joins the tail of the queue, and the processor always runs the

process at the head of the queue. This ensures that each process will eventually run (regard

less of processor demand), guaranteeing what is known as non-starvation or fairness. This

mechanism does not enable market trade-offs among the needs of different processes, how

ever. A natural approach to doing so is the "highest-bid, first-served" queue. This corre

sponds to auctioning time-slices, with the queue corresponding to an auction house. Nal'vely

applied, this would lead to disaster: if the market price of the processor stays above a pro

cess's posted bid, the process will never run, and hence never learn that it needs to raise its

bid. This defines a central problem in auctioning processor time.

2.1.1. Auction-house initial strategies

A basic question in an auction-based strategy is the nature of the auction: kinds include the

double auction, English auction, Dutch auction, and first-price and second-price sealed-bid

auctions [5,6). In a double auction, sellers offer lower and lower prices while buyers offer

higher and higher prices until they meet. In the familiar English auction, buyers bid higher

Computational Resource Management 237

and higher prices until the process plateaus; the seller accepts the highest bid. In a Dutch auc

tion, a seller offers lower and lower prices until a buyer claims the item at the present price. In

a first-price sealed-bid auction, fixed bids are submitted, and the highest is accepted; in a

second-price sealed-bid auction, the highest is accepted, but the highest bidder pays the

amount bid by the second-highest.

These auction institutions have differing applicability to the sale of time slices. The double,
English, and Dutch auctions (at least in na'ive implementations) require that processes be

active while bidding for the very processor they need in order to be active-a major problem.

Sealed-bid auctions avoid this problem, but they fail to guarantee non-starvation: if the pro
cessor price remains above what a process has bid, it will never be scheduled-and if the pro

cess is never scheduled, it cannot raise its bid. Thus, auctioning processor time is a bit like

trying to auction wakeup pills to a sleeping crowd.

The approach explored here will be a variant of a sealed-bid auction, but the choice be

tween first- and second-price forms remains. In laboratory experiments with human bidders,

second-price sealed-bid auctions are known to give results similar to those of English auc

tions, and both lead to efficient markets (as does the double auction) [5,6]. In the English auc

tion, the winning bidder pays only slightly more than the second-highest bidder; a second
price sealed-bid auction yields a similar result directly. Dutch and first-price sealed-bid auc

tions lead to less efficient markets.

First-price sealed-bid auctions give an incentive to guess what the next-highest bid will be,

and to bid just slightly more. This strategic guessing serves no useful purpose in a market

system. Second-price auctions give an incentive to consider only the question: "At what given

price would my best decision change from 'buy' to 'don't-buy'?" This is the price one should
bid, since bidding any other price might result in buying (or not buying) when one should

not. Estimating this price means estimating actual value, which serves a decidedly useful pur

pose in the market system.

We have selected a variant of a second-price, sealed-bid auction for our initial market strat

egy. It may be called an escalating-bid auction.

This system may be visualized as an auction house full of escalators (admittedly a strange

image). A process enters the auction by placing a bid on one of the escalators-the greater the

bid, the greater the initial height. Each escalator rises at a different rate, raising its bids at that
rate. (A special stationary escalator holds fixed bids.) Together, the initial bid and escalation

rate are a form of priority. A processor always runs the highest-bidding process. A house rule

sets a maximum allowable initial bid-you can get on only at (say) the first five floors.

Each auction house owns or leases a processor, or a certain fraction of its operating time.

Escalator data structures make the highest bid readily available (i.e., each escalator is a priori

ty queue) . Each non-stationary escalator is characterized by a rate of escalation, escalation
Rate, measured in currency units per time unit. At a time t, the value of a bid of zero initial

value placed on an escalator at time timeOfBid is simply escalation Rate x (t - timeOfBid).
A non-zero initial bid of value initialBid is assigned a virtual bid-time, timeOfBid, equal to

238 K.E. Drexler and M.S. Miller

t - (initialBid/escalationRate), and entered accordingly. Thus, each non-stationary escala

tor is marked with a fixed escalation Rate and holds a current list of bids, sorted in time

OfBid order. Each bid includes its timeOfBid, a suspended process, and access to an ex

pense account. The stationary escalator is a special case; instead of a timeOfBid it records a

fixed initialBid. (A negative initialBid is acceptable on a moving escalator. We assume that

two idle processes are entered with zero bids on the stationary escalator to avoid accepting a

negative bid-value; the first always stands ready to run, at the price set by the second.)

To place a bid on an escalator, one sends a suspended process, an initial bid, and access to

an expense account from which the auction house is to withdraw money. When the bid is

placed, the auction house immediately withdraws from the expense account enough funds to

cover the worst-case cost of handling that bid.

At the beginning of each time slice, the auction house examines the top bid on each escala

tor, taking the highest bid among them (and promoting its follower) while noting the second

highest bid (taking into account the newly-promoted bid). It then charges the high bidder the

amount of the second-highest bid, and gives the high bidder a slice of processor time. If the

highest bidder's expense account fails to cover the (escalated) bid, however, it is removed

without running, and a bid equaling the balance of its expense account is entered for this bid

der on the stationary escalator.

The escalating-bid auction seems well suited to the processor scheduling problem. It

avoids the sleeping-bidder problem and it ensures that a processor can accept a bid at any

time--crucial, when the commodity to be sold is as perishable as time itself.

2.1.2. Bidder initial strategies

A sufficient initial strategy for a bidder is simply to place a zero bid on the fastest escalator

backed by the bidder's own expense account. Note that, among initial-strategy bidders, the

escalator algorithm reduces to a round-robin scheduler. In a slight variation, a negativeinitial

Bid can be placed to ensure a delay of at least (-initialBid/escalationRate) until the bidder

next runs.

2.1.3. Analysis

In an open system, where total processor capacity and demand will be responsive to mar

ket forces, the market price of time on a processor will be bounded. Accordingly, a bid placed

on any non-stationary escalator will eventually grow large enough to ensure that it is accepted.

Thus, non-starvation would be ensured.

Where too much of the demand is unresponsive to price, other conditions are necessary to

ensure non-starvation, such as limiting the _max;imum initial bid, maxlnitialBid, to some

fixed value (the "fifth floor") as suggested above. Consider a process Z with a bid on a mov

ing escalator. Z will either run or have its bid escalated past maxlnitialBid within a fixed

time; at that time, only a finite number of other processes can have bids higher than Z' s, and if

Z is riding the fas test escalator, no new process can be scheduled to run ahead of it. Thus, the

auction house guarantees non-starvation to any process that follows the strategy of always

Computational Resourc e Management

.g
a.

Time

Figure 1: Escalating bids. The jagged line above represents a hypothetical
processor price history. The series of light triangles below represents the bid
history of a process that repeatedly reschedules itself with a zero initial bid; the
dark triangles represent that of a similar process using a faster escalator. The pro
cessor price history reflects the bids of numerous other processes.

entering a bid on the fastest escalator.

239

The relationship among bids, prices, and rates of use is simple in certain illustrative cases.
Assume a stable price for time-slices, equal to P, and an escalator that raises bids at a rate R
per time slice; an object that repeatedly reschedules itself after running by placing a zero initial
bid on this escalator will receive a fraction of the processor time roughly equal to R/P. Con
sider an auction house in which a fixed number of processes repeatedly run and reschedule
themselves, placing bids with zero initial values and a fixed distribution across the various es
calators; assume further that bids are numerous enough and uniform enough to make second
highest bids approximately equal to highest bids. There will then be a steady-state price for a
time-slice (with small fluctuations); this price will equal the sum over the escalators of the
number of bids on each times the amount of escalation during a time-slice. (This quantity
equals the per-time-slice increase in the sum of the bids, and all the money bid is eventually
spent on processor time.) Non-zero initial bids will have an effect roughly like that of differ
ent escalation rates, and fluctuating rates of bid-placement will cause fluctuations in processor
price.

Given fluctuating prices (see Figure 1), faster escalation rates will result in higher average
costs per time slice. If scheduled at random times, rapidly-escalating bids will strike the mar
ket-price line at nearly random times (random sampling would hold strictly if escalation were
infinitely fast). As may be seen, slowly escalating bids are unable to strike the price line at the
top of sharp price peaks; they are more likely to strike the down-side of price troughs. Figure
1 also illustrates how a strategy of re-bidding at zero on an escalator after every run will, on
the average, use more time-slices during broad troughs than during broad peaks, yielding a
cost per time slice that is lower than the average cost; conversely, bids placed on fast escala
tors will pay a higher than average cost.

240 K.E. Drexler and M.S. Miller

The overhead of the escalator algorithm is modest and insensitive to the number of bids
being escalated. Assume N is the number of bids on an escalator and M is the number of esca
lators. Placing or removing a bid is then an operation taking a time proportional to log(N),
given a suitable choice of escalator data structure (a priority queue). Finding the highest and
second-highest bids by searching the top bids is an operation taking a time proportional to M.

2.1.4. Variations

The simplest auction-house initial strategy provides a fixed set of escalators, as described;
more complex strategies could create and delete escalators to suit bidder demand. Other exten
sions would allow bidding for multiple time-slices as a block (up to some maximum size), or
enable refunding payment on unused portions of a time slice (and starting the next full time
slice early). Where multiple processors are equally accessible, a single auction house could
serve them all. Finally, the owner of a processor could run an auction procedure for a fraction
of the available time slices and an entirely different procedure (perhaps some form of futures
market for real-time scheduling) in another.

As described, the simplest bidder initial strategy is to schedule a zero bid on the fastest es
calator. A more complex strategy might use a fast escalator only for fast service at a (likely)
higher price, or slower escalators for slower service, at a (likely) lower price. A positive ini
tial bid on a slow escalator can speed service while still giving better odds of running at a low
price than does a bid on a fast escalator. Tasks of strictly limited value (which need not be
completed) can be scheduled on the stationary escalator; they will run only if the price of pro
cessor time falls low enough. A regularly-scheduled rebidding agent can be used to implement
a very broad class of strategies, taking into account new information from bid to bid.

There are several open issues in this approach to processor scheduling. These include
finding procedures for:

• choosing maxlnitialBid (where this parameter is needed),
• choosing the numbers and rates of escalators, and
• charging for bid-record storage.

In addition to solving the sleeping-bidder problem peculiar to process scheduling, the es
calator algorithm provides a low-overhead auction procedure for allocating other resources
that are naturally divided into time slices. For example, parameters for a bidding strategy
could be part of a packet traversing a network, enabling the packets to bid for access to com
munication channels.

2.2. Expense accounts

We have described initial market strategies for the relationship between owners and bid
ders; we also need strategies among bidders, to ensure that they can pay for processing time.
Since bidders typically need processing time in order to satisfy external requests, the initial
market strategy should follow the dynamic structure of relationships created by request mes
sages from client objects to their consultants.

Computational Resource Management 241

When a client requests service from a consultant, we assume the client will pay to satisfy

the request. We need an initial strategy that enables consultants to charge and clients to pay,

all with a minimum of programmer attention (the following strategy does, however, require
that objects distinguish between request and response messages). The initial strategy should

itself provide neither profit nor loss, and hence should simply require that consultants charge

for their operating costs, and that clients pay for them. This initial market strategy must (as
always) interact smoothly with other strategies. The initial strategy must accommodate clients
wishing to monitor charges or limit payments, and consultants wishing to charge less or more
than their expenses (e.g., to promote a new service or to collect royalties).

The initial strategy is as follows: Each process draws operating expenses from its current

expense account. A client includes access to its current expense account in each outgoing re
quest. The consultant then uses this account as its current expense account while satisfying
the request. This strategy is identical to the protocol specified in the Act 2 language [7] for

passing sponsors. Like expense accounts, these give bounded access to processor time [8].

In a set of objects following this initial market strategy, all computation serving an external

request will be paid for by the account contained in that request. Since no computation will be
cut off while that account remains solvent, well-funded computations will be completed.

In variations on this strategy, a consultant may charge according to whatever policy it
wishes, since it is free to draw funds from the incoming account and to use a different account
to pay for its computation. If a consultant requires a minimum sum to complete a computa
tion, it can ensure access to this sum by transferring it to a new account at the outset.

A client may limit its payments to a consultant by sending a new account with the request
and placing a limited sum in that account. This is like a threshold pointer, in that the client
limits its liability at the risk of cutting off valid computation.

A client may monitor its payments to a consultant by sending a shadow account which
passes charges through to an actual account while remembering their sum. When the consul

tant finishes, the client recovers the record of the total charges and shuts down the shadow

account. This enables clients to accumulate cost information to guide further requests.

3. Storage management
In rent-based storage management, we again must specify strategies both for the relation

ships between buyers and sellers (here, renters and landlords) and for the relationships among

renters (in their roles as clients and consultants). The latter are complex.

3.1. Renting memory: the rental-auction algorithm

In a fully competitive market for storage space, a landlord (having many competitors) will
maximize revenue by seeking full storage utilization, setting its rental price at a level at which

supply equals demand (the market-clearing rate). An auction-based initial market strategy can

approximate this rather well.

242 K.E . Drexler and M.S . Miller

A landlord mainta ins (or uses) an auction house which keeps two data structures, a bid list

and a drop list. The bid list records requests for blocks of storage; each request is associated
with an object, a desired quantity of storage (limited to a maximum request, maxBlockRe
quest, of perhaps 1 % of total local storage), and a price-per unit of memory, per of unit of
time- bid for acquiring it (bidPrice). Bids are accompanied by deposits to cover handling
charges. The drop list records already-leased blocks of storage, each associated with an ob
ject , a block size, and a unit rental price at which the object would prefer to release it (drop
Price). The lists are ordered by bidPrice and dropPrice respectively. A running total is
kept of the amount of wasted space.

We consider the bid list to also contain an infinite number of bids at zero rental price for
atomic blocks of storage to be allocated to afre e memory sponge object. The sponge will be
allocated memory only when no one has any use for free storage; any memory so allocated is
entered on the drop list with a zero price. In a mature agoric open system , the demand for
memory space should be enormous at low enough prices. With a charge-per-use policy, there
is no bound to the amount of software that would migrate to a machine offering a zero storage
price ; storage of debugging traces and caching of calculated results would likewise expand at
a zero storage price. Therefore, one would not expect to see a zero price or see any memory
allocated to the sponge.

Fresh unheld space becomes available at the beginning of operations, when space is vacat
ed, when objects are evicted for nonpayment of rent, or when more memory is purchased and
added to the system. The auction house then accepts bids from the top of the bid-list, highest
bidPrice first. It continues allocating blocks to bidders until it encounters a bid for a block
larger than the remaining unheld space. This bid is shelved, the allocation process stops, and
the price of this unsuccessful bid is taken as the rental price of storage for all objects during

the next time segment.

If, as expected, the blocks requested total more than the storage available, then the maxi
mum unallocated storage will be smaller than maxBlockRequ est. If this is 1 % of the total,
storage utilization will be at least 99%. For example, consider a computer with ten megabytes
of main memory and a memory management unit that maps addresses in !kilobyte blocks.
Memory to be allocated and traded would consist of integral numbers of these !kilobyte
blocks (which can be mapped arbitrarily, hence we can ignore fragmentation). One percent of
10 megabytes is 100 kilobytes, so this is maxBlockRequest and the largest amount that can
be wasted by the above procedure. We assume that any object needing a block bigger than
100 kilobytes can afford the trouble of acquiring it 100 kilobytes at a time.

When a new bid is placed , its bidPrice is compared to the highest bidPrice on the bid
list. If it is lower, it is placed on the bid list; if it is equal to or greater than the highest bid
Price and equal to or less than the lowest drop Price on the drop list, then it is accepted if it
requests a block that can be allocated from unheld space, and otherwise is placed on the bid

list. If it is greater than the lowest dropPrice, then room may be freed for it.

In this case, the auction house attempts to identify enough space to accommodate the new
bidder, start ing with the unheld storage and then proceeding to the held blocks lowest on the

Computational Resource Management 243

drop list. Objects responsible for identified blocks are asked to vacate them or to set a higher
dropPrice. On vacating, renters are refunded the unused portion of their rent money. This
process stops when (1) enough space has been freed, or (2) a block is encountered having a
drop price equal to or greater than the bid Price of the new bidder. In case (1), the new bidder
receives storage space and is placed on the drop list at a dropPrice of its choosing; in case
(2), the new bidder is placed at the head of the bid list. In either case, the rental price of stor
age becomes the bid Price of the highest unsuccessful bidder.

To guarantee that resources used will be paid for (and avoid incentives for the evolution of
parasitic software), landlords must require payment for a rent period in advance. This pay
ment should cover the cost of the next billing cycle and include a deposit to cover the cost of
deallocating memory and of any special services specified in the lease agreement, such as
erasure of vacated space (a sort of cleaning deposit). Rental rates will fluctuate during a rent
period, with the length of a rent period varying as the inverse of the average rental rate.

Landlords can accept lease agreements of varying lengths, requiring varying amounts of
pre-paid rent to allow objects to tune their storage management overhead. They can likewise
agree to provide a period of advance notice before collecting rent, giving the renter time to
raise money, find alternative storage, or close out its affairs.

A more complex strategy would offer prompt storage allocation (from pre-emptable cache
or unheld storage), charging a premium for this service. Alternatively, this and other services
could be provided by renters subletting space in their blocks. A useful service would allow a
renter to split off a piece of its storage block and post a new drop-list entry for it, allowing the
sale of portions of allocated blocks without the overhead of the auction house procedure.

3.2. The market-sweep algorithms

An initial market strategy for renters is to get space by placing high (perhaps escalating)
bids, and to keep it by paying whatever is necessary, so long as funds hold out. The chal
lenge is to have funds hold out while the renter should stay, and eventually run out when the
renter should vacate. Since a consultant must pay its rent in order to serve referencing clients,
the initial market strategy follows the referencing structure among consultants and their
clients. This structure is a directed graph containing cycles and changing over time. As a
result, these strategies are more complex than those above.

A consultant must not be evicted if can be reached through a chain of strong pointers start
ing from a well-funded object (i.e., non-garbage must not be collected). Many objects will
pay their rent out of fees charged for their services, but some objects-though never before
used-may be of great value in rare contingencies: consider an object that contains plans for
coping with the next terrestrial asteroid impact. Objects that are needed but rarely used must
survive by charging their clients retainer fees; an initial strategy must assume this worst case.

A system based on retainer fees must avoid several problems. In one approach, objects
would, when charged rent, send alert messages to their clients, asking for the needed sum;
these clients would do likewise until a solvent object was found to pay the bill. This system
has low capital costs, requiring little cash on hand, but it leads to an explosion of circulating

244 K.E. Drexler and M.S. Miller

alert messages, and hence to unacceptable transaction costs. In an alternative approach, ob

jects would keep enough cash on hand to cover worst-case rent and retainer fees. This system

has minimal transaction costs per rent period, but in the absence of information on worst-case

rents and fees, capital requirements are unbounded and garbage collection would be indefi
nitely postponed.

For a system to be acceptable, transaction and capital costs must both be bounded. Trans
actions should require on the order of one message per pointer per rent cycle, capital required

should be some fixed multiple of per-cycle expenses, and the per-cycle retainer fees paid by a

client should be reasonably related to the rent paid by its dependent consultants.

Satisfying these constraints proves to be difficult. The component algorithms of the mar

ket-sweep approach include the following:

• The dividend algorithm, an initial market strategy which provides incentives to pay re

tainer fees to an object and provides it with estimates of future use. It has strategic properties

which should make it useful in contexts outside storage management.

• The retainer-fee algorithm, an elementary algorithm for billing clients. This provides for
cash flow in normal circumstances.

• The alert algorithm, which provides for fast cash flow when needed to prevent improper

eviction. It is an initial strategy aimed at guaranteeing systems programming constraints, but it
involves a race which can fail given a sufficiently unfavorable combination of cash reserves,
rental notice period, message-passing speed, and message path length.

• The base-demand algorithm, which provides estimates of future cash requirements to
minimize the need for alerts. It is essentially heuristic, aimed at tuning reserves and estimating
costs. As a cost-estimater, it can underestimate the drop in retainer charges that will occur
when a new client points into a cyclic reference structure.

3.2.1. The dividend algorithm

Raising money by simply dividing the total retainer charge equally among several directly
pointing clients won't work; it suffers from the classic public-goods problem: each client has
an incentive to shirk, as long as another will pay. To pay to retain a consultant while a com
petitor uses it without paying is an evolutionarily unstable strategy---clients following it will
lose in price competition. Multiple clients can pretend to be single clients (and thus cut their
liability) by pointing via a middleman (Figure 2). To make simple retainer-charging schemes
of this sort work would require peculiar and uneconomical limitations on object interactions,
such as (somehow) preventing one object from serving as a middleman for another, or pre

venting a consultant from offering service to new ~lients.

A better alternative is for the consultant to collect a large enough surcharge per use to com
pensate all clients (or their heirs and assigns) for their earlier retainer payments. This approach

converts retainer-payment into a form of investment, to be repaid through dividends raised by
imposing a per-use surcharge. To make such investment attractive, dividends must be propor-

Computational Resource Management

,c··

(a)
$30 Rent (b) $30 Rent

Figure 2: Client conspiracy. Straight arrows represent clients pointing to
consultants; they are labeled with the corresponding retainer fee paynJents;
crooked arrows represent rent payments. (a) shows the charges if a consultant's
liabilities are split equally among its clients; (b) shows how C and D can reduce
their payments by pointing through a forwarder, E.

245

tional to the amounts invested, and must include compensation for the risk that a consultant

may in reality be used seldom (or not at all), yielding few or no dividends.

This raises the problem of estimating a consultant's future use rate (or use probability).

The lower the expected use rate, the higher the per-use charges and dividends must be to

compensate clients for their investment. These use-rate estimates must somehow reflect the

client's own judgment, lest clients be unwilling or too-willing to pay.

Future use rates for a consultant could be estimated using the sum, average, or median of
future use rates estimated and reported by its clients. But why should these reports be accu

rate? Mechanisms which yield estimates proportional to the sum or average are clearly

unstable: if all clients share equally in retainer payments, high-use-rate clients should estimate
an infinite use rate, to drive the per-use surcharge for dividend payments to zero; low-use-rate

clients should estimate a zero rate, to maximize their dividends. Use of the median mechanism
throws away information (e.g., a single high-use-rate client among several low-use-rate cli

ents will have no effect on the estimate); this presumably leads to wasteful strategic behavior.

Another approach would be to accept bids for the privilege of investing, with the winning

bidder asking the smallest surcharge-and-dividend per future use. This approach is stable,

since payment is voluntary and will typically be justified at some level of dividend, but it fails

to integrate market information effectively. Instead, it encourages clients to give a falsely-high

impression of their future use rates, to drive down others' bids and hence their own future

usage charges. Thus, the prospective bidder must guess others' actions based on what may be

actual disinformation. Further, the special role of the low bidder encourages messy strategic

behavior.

246 K.E . Drexler and M.S. Miller

One would like an algorithm for collecting retainer payments and paying dividends that has
better properties. Ideally, it should give clients an incentive to report accurate use estimates,

enabling a synthesis of estimates made by those in the best position to know; further, it
should provide incentives for simple strategic behavior in typical situations, and it should be

insensitive to issues of entity definition-to whether one treats a buying club as an object or
as a collection of objects.

3.2.1.1. Description

This section provides a brief, abstract description of the dividend algorithm in its simplest

form. Later sections describe its operation more informally, analyze its properties, and de
scribe a slight modification that yields a more practical version.

Definitions of variables

R = a retainer-seeking object (the consultant)

t = an index specifying a time at which R collects retainer fees

Ft = the total fee required by R at time t

Cj = a client of R

m = the number of clients referencing object R

Nt = the reported estimate of number of future uses of R by Cj

Sjt = Ft Nt/I- Nit= the share of Ft requested of Cj
1=1

Pt = the amount actually paid by Cj (is ~ Sjt)

NJt = Nt Pt/St = the "effective" reported estimate of future uses

F~ = the total amount actually collected by R at t, = _f Pit
1=1

Dt = the "dividend sum" at t for Cj

I m , , , /(m ,)2
At = Pt .L Nit = Ft Njt .L Nit = the amount to be added to the dividend sum

1=1 1=1

nt = the actual number of future uses by Cj, counting from time t

Et = the expected net cost offuture uses (resulting from actions at time t)

Lt = time since R last collected retainer fees

W = time weighting factor (for the time-weighted version of the dividend algorithm)

The dividend algorithm proceeds as follows: at time t, object R has clients Ci(i= 1 to m)

and seeks a total retainer fee Ft. For each client Cj, R maintains a dividend sum Djt, created and

initialized as zero when Cj first pointed at R. At ti!Ile t, R asks each client Cj for a number Nt.
R then asks each Cj for an amount of money

Sjt= F tN jt/f Nit.
1=1

From Cj, R receives (after using charging algorithms described in the next section) an

Computational Resource Management 247

amount Pjt. Then, R replaces each Njt (as needed) with Njt =N jtPjt/Sjt , and (in the unweighted
form of the dividend algorithm) sets

Djt = Dj(t-1 l + Ajt, where Ajt = P jt/f Nit•
1=1

When R is used between times t and t + 1 (by any object, whether among Ci or not), R
collects a surcharge equal to

m
~Dit,
1=1

(plus an amount to cover actual service costs, profits, and so forth-these charges are ignored
in the following , since they have no effect on rent and retainer strategies). R then pays a divi
dend equal to Dit to each client Ci.

3.2.1.2. Basic analysis

Clients evolved under competitive pressures will tend to act so as to minimize the expect
ed net costs of their actions. These costs may be analyzed as follows .

Assume that client Cj first paid a retainer fee to Rat time t = T1. For a client Cj, total ex
pected costs and paybacks are a function of Ft, Nit, and Pit (for i = 1 tom, and t = T1 to oo).
The analysis of expected costs may be simplified by noting how payments are mediated
though the dividend sum Dj, Let us represent a sum over i =1 tom, i-# j as

LX-. . I.
l;tJ

The cost to Cj of using Rat a time T2 is

T2

~ Dit= L ~Ait•
l;tJ t= T1 l;tJ

Payback at the time of use by another (at time Ti) is

T2
Djt= L Ajt•

t=T1

Since these costs and paybacks are a simple sum of contributions from different times,
distinct contributions can be identified from each time. Thus one can isolate the consequences
to Cj that result from retainer-payment actions (by Cj and others) at any given time: these con
sequences are independent ofretainer-payment actions at other times. This simplifies the anal
ysis of optimal strategies. The net cost to Cj resulting from actions at time t (represented as Ejt)
is simply (1) the immediate cost of paying the retainer fee, plus (2) the net surcharge per Cj's
own use (resulting from the other clients' increments to the dividend sum at time t multiplied
by the future number of uses by Cj), minus (3) the dividends from each of the other clients'
uses (resulting from Cj's own increment to the dividend sum at time t multiplied by the total
future number of uses by others). This is

248

~
C:
f!! ...
:::,

(.)

K.E. Drexler and M.S. Miller

10

Direct payment

Total cost

5

0
Total per-use charges

15
Total dividends (Income)

Figure 3: Dividends and incentives. Assume that client Cj will make five
future uses of object R, while its other clients together will make a total of five
uses. Differing usage estimates N~ will then incur long-run costs shown above,
assuming that R charges a retainer fee of ten currency units, and that the other
clients' estimates sum to five. Note that Ci's total cost is minimized by reporting
a correct estimate of its own future use.

= F; C~1 N;f 1
[nit + Nit (1 - i~1 nit/i~1 Nit)]-

Considered as a function of njt , this has a minimum at

N~ (optimal) =
2 njt+ (~ nit -~N;~

la'c] la'cj

3.2.1.3. Analysis of incentives

The above equation implies that if

~ Nlt = ~nit,
l;tcJ la'cj

then the optimum value of NJtfor client Cj to submit equals nit· That is, if other clients are

making accurate predictions of their future usage, then one can minimize costs by accurately

predicting one's own usage. Cost allocation is uniform, with desirable incentives. After re

moval of a fixed sum to cover R's expenses, all charges are redistributed among the clients in

a zero-sum game. If all clients accurately estimate their own usage, then each client's net

charges are strictly proportional to its usage. This provides a level playing field for large and

small entities, avoiding perverse incentives. Since Njt(optimal) = njt, and since nit represents
real uses, pooling or splitting demand among objects can make no strategic difference.

If other clients suffer from a systematic bias in their usage estimates, this benefits those

that estimate their own use correctly. All the inaccurate clients can be modeled as one large,

inaccurate client which (by hypothesis) is in an environment in which the remaining client(s)

Computational Resource Management 249

make correct estimates. Accordingly, its inaccuracy is suboptimal, causing losses . As this is a

zero-sum game, those losses accrue to the accurate estimators.

But if a client knows that other clients are systematically submitting inaccurate estimates of

their future usage, and knows the direction of their bias, it can bias its own estimate to im

prove its expected earnings. The direction of optimal bias-whether in the same or opposite

direction to the others' bias--depends on additional knowledge of the relative magnitudes of
the usage rates involved. It should be rare for a client to have all this knowledge. In a typical

round, a client submits a number, then pays a request. It has no direct way to infer others'

estimates or their actual future usage rates.

If others' total estimates are known to mistakenly equal zero, Cj's formally optimal value
of NJt is zero, driving the future charge per use to infinity, and giving infinite expected divi
dend revenue to Cj (assuming demand for R is truly independent of its surcharge!). However,
consideration of the real relation between price and demand will give different results, in

which R is in price competition both with R's competitors and with any alternative copies of
R, and in which the client-investor Cj must be viewed as a co-provider of R's service. Fur

ther, if R (or the creator of R) expects future uses from yet-unaccounted-for clients, then self
investment (by acting as a virtual client) makes economic sense. This would raise the effective
total of others' estimates above zero.

In addition to the price-sensitivity of demand, the fixed transaction costs of paying retainer
fees modify these conclusions somewhat, giving low-rate users an incentive not to participate
in the process. If enough do not, the resulting underestimate of usage will give a positive
return on investment to the clients that do, covering their transaction costs. A full analysis of
optimal behavior seems likely to be complex.

3.2.1.4. Adding a time horizon

A major problem remains with this form of the algorithm: the, magnitude of the dividend

accounts grows steadily over time, without bound. There is no equilibrium cost per use,
given finite estimates Njt by the clients, even given provision of an identical service to identi
cal clients at a uniform rate. If clients expect an unbounded number of future uses, the algo

rithm becomes indeterminate regarding allocation of retainer shares to clients, refunds of in

vested sums become infinitesimal, and full payback of invested sums is indefinitely post
poned. It therefore makes sense to investigate a broader family of dividend algorithms.

Consider a consultant R that (according to contract) will be in existence only until a time T.
The above algorithm may be applied, and retains all its properties, given that the clients notice

that their uses will (of necessity) cease at time T. This would continue to hold if R were im

mediately replaced with a new instance of itself having all dividend accounts initialized to
zero. Clients could continue receiving service, but their optimal values of NJt before T would

take account only of expected uses before T. The same analysis would hold if R simply

zeroed its accounts at T, again according to contract.

In general, a consultant R can announce a policy in which all dividend accounts are to be

250 K.E . Drexler and M.S. Miller

multiplied by a time-dependent factor w(t); in the above case, this factor is one before T and
zero afterwards. Since expected costs and resulting strategic decisions are dependent only on
expectations, actions, and policies in the current time period, a different weighting function
could be announced for each period.

Assume that each client Cj will use R (counting from the present time t) at times 'Tj1, 'Tj2,

'Tj3 Represent the weighting function applied to the dividend sums (relative to the present
time period t) as Wt('!). The net cost to Cj resulting from actions at time t is then

Ejt = Pjt + (~- At\ f Wt('Tjk) - Ajt (L. f Wt('Tjk))
l;tJ ~ k=1 l;tJ k:1

But this is simply the original expression for Ejt with the substitution

n1·t = f Wt('TJ·k).
k:1

Hence the analysis proceeds as before, but with sums of time-weighted uses replacing sums
of uses; the previous analysis becomes a special case in which all weights are unity.

This immediately makes available a family of strategies sharing desirable properties. A
simple member of the family is w(t) = exp(-Wt), where Wis non-negative. This may be im
plemented in approximate form to create an initial-strategy dividend algorithm in which, in
each round, R sets

D~ = Dj(t-1)exp(-WL1) + Af

For a uniform rate of use equal to Uj (the time-average of dnjJdt), the optimal value of Njt is
approximately Uj /W; this is exact, in the limit of short time periods Lt. As we shall see, W
should not be set based on time-value-of-money considerations. Though the function is expo
nential, it does not represent compound interest.

This algorithm retains the stability and incentive properties of the first algorithm described.
In addition, it yields a stable cost per use, given stable total retainer fees and usage-rates.
Charges per use are still equal for all users, if all users estimate their usage correctly. Further,
this algorithm asks clients for estimates of usage in an (effectively) bounded time interval
that is, it asks them for an estimate they may plausibly be able to make.

The parameter W can be heuristically tuned subject to the constraint that it be non-negative.
In general, it should perhaps be tuned to make

m ,
_l: Nit::::: 1.
1=1

This would change the sense of what is being estimated from the number of future uses to the

probability of use within a bounded time interval_. An object R may at any time announce that
future estimates will be entered into new dividend accounts subject to a new function w(t), so
long as it pays dividends that result from summing the results of the new accounts with the
results of the old accounts (which must be updated according to the old algorithm). This
maintains all the incentive properties described above and allows retuning of Win a fair way,
at the expense of additional overhead.

Computational Resource Management 251

This algorithm allows a natural way to account for the time value of money, which may be
important, since objects recover their investments only after a delay. If all clients submit low

estimates, then all will receive greater dividends when R is used; this corresponds to receiving

a return on their investment. For example, if they all bias their estimates by assuming a

slightly greater value of W than R uses in its calculations, then the result will be as if they

receive a certain rate of interest while their investments are repaid. (This holds on the average,

assuming tha~ actual use rates match expected use rates.) If different objects seek different

rates of return, strategic considerations become more complex. Time-value-of-money consid

erations should be small in systems open to the external market, because market interest rates

measured in percent per year are tiny per day or second. Long-run interest rates will equili

brate in a connected open system-investment will move toward higher rates, driving them

down.

3.2.1.5. Accounting costs

A remaining problem with this algorithm is that R must maintain a dividend account for

every client ever charged a retainer. This may be corrected in a way that demonstrates a gener

ally-applicable principle for lowering accounting overhead.

What is important to the incentive structure of an algorithm (in the absence of risk-averse

ness considerations, as is appropriate with small enough sums of money) is not that actual
costs have a certain magnitude, but that average costs do so. Random variations in actual

expenses and payments make no difference if the amounts are small and the averages are

correct. Accordingly, with proper attention to these points and to conservation of currency,

charges and payments may be rounded or made on a statistical basis.

In the present case, we seek a principled way to cut off payments to former clients, cutting

short the long, exponential tail of the dividend account. This can be done by freezing the mag
nitude of the account when it reaches a small-enough level, and then giving the account a suit

able half-life for total deletion (using decisions based on random numbers to give a certain

probability of deletion per unit time). This leaves the expected payback in all future periods

unchanged, but makes the expected cost of maintaining the account asymptotically approach

zero.

3.2.1.6. Circulation of usage estimates

Leaving aside the small correction for the time value of money, an estimate NJ1may be in
terpreted as indicating a rate of use equal to W N~. The quantity

m '
W_1:Nit

1=1

is then R's total expected rate of use, which R can use in estimating the rate at which it will

use its own consultants, thereby propagating usage information through the system. The divi

dend algorithm thus provides local incentives for the combination and propagation of accurate

estimates of future service demand, perhaps making possible sophisticated heuristics for an

ticipatory resource allocation-heuristics that reflect global conditions through purely local

252 K.E. Drexler and M.S. Miller

interactions . A conservative initial market strategy, however, might be to base usage estimates

initially on some global average of initial-object-usage rates, and later on actual experience.

3.2.1.7. Open problems: the dividend algorithm

Several open problems are associated with the dividend algorithm. These include selecting

an appropriate value of W and choosing an initial usage estimate in the absence of prior

history.

A particularly interesting problem is the exploration of strategies which rapidly propagate

future-usage estimates though a network of objects. If R's clients report increases in their

expected usage, then R very likely has good reason to report increases in its expected usage of

its consultants. General rules for revising these estimates must be stable in the presence of

cyclic reference structures, and stable in the presence of clever, self-interested participants.

3.2.2. Normal money flow: the retainer-fee algorithm

The retainer-fee algorithm is the basic strategy for collecting funds to cover an object's rent

and retainer-fee obligations. We earlier described initial market strategies as a sort of scaffold

ing for building a market. We expect the dividend algorithm just described to be scaffolding

of a sort that eventually becomes a structural member, the retainer-fee and other initial-strategy

algorithms for storage management seem like scaffolding of a sort one expects to be replaced

as the construction proceeds. They raise fewer issues of incentives and strategic stability and

are intended chiefly to ensure adequate money flow on a heuristic basis.

The retainer-fee algorithm proceeds as follows. In a given cycle each renter-object R has a

number of clients, numberOfClients, and a current balance, currentBalance; it calculates

(as discussed below) a desiredBalance (a target cash reserve) and a balanceReserve to

be set aside for certain classes of payment. The latter is chosen such that the expected expens

es for the next rent cycle can be paid without dipping into the reserve. Section 3.2.4, on the

base demand algorithm, will explain how these expenses are estimated.

When asked to pay rent, R first calculates a total retainer fee Ft by calculating the amount

(if any) by which its currentBalance falls short of its desiredBalance. R then charges

each of its clients a retainer fee Sjt calculated through the dividend algorithm. (To ihis is added

a surcharge, not counted in the dividend algorithm, to cover the billing cost; from an incentive

perspective, this surcharge simply adds to the transaction costs discussed in the section on the

dividend algorithm.) Clients pay these charges from their available funds, if they can. The

dividend algorithm provides incentives to pay, since shortfalls will make N; < Njt·

If all clients pay in full, then R achieves a balance equaling its desiredBalance and is

finished. If any fail to pay in full within a fixed time limit, those clients that paid their shares

are asked for the remaining sum by iterating the r~tainer fee and dividend algorithms on these

clients, using the values of Njt they reported in the first round, and defining Ft as the remain

ing sum to be collected. This maintains the incentive structure of the dividend algorithm.

Since this process always eliminates a client from consideration, it can be iterated

(couhting the first round) no more than numberOfClients times. Given the addition of a

Computational Resourc e Management 253

billing charge , the maximum un-reimbursed message cost at any time is numb erOf C lients

times the cost per message , hence the ca sh on hand needed to follow this prot ocol is strictly

bounded and may be covered by a fixed per-client deposit.

If iteration of this request process fails to produce enough money to preven t an improp er

eviction , further measures must be taken. These are the subject of the alert algorith m.

3.2.2.1. Open problems: the retainer fee algorithm

Two open problems related to the retainer-fee algorithm involve essentially heuristic choic

es of parameters. One is the choice of how much cash to keep on hand to meet cash-flow con

tingencies, another is the choice of the length of a pre-paid rent period . An initial market strat

egy for the former is presented below as the base-demand algorithm. The latter depends on (at

least) the cost of storage rental, the cost of processing rent requests, and the likelihood (as a

function of time) that one should vacate storage .

Generation scavenging [9] and the Lieberman-Hewitt garbage collection algorithm [1] both

rely on the insight that objects have a high infant mortality-that a good predictor of the lon

gevity of an obje ct is its age. Both check new objects more frequently, thereby collecting

more garbage with less effort and cost. Our initial strategy can do likewise simply by pre

paying rent for longer times as the renter ages.

3.2.3. Special money flow: the alert algorithm

If the retainer-fee algorithm fails to produce enough money to prevent R's eviction , R

sends each of its clients an alert message. Strong pointing fundamentally means responding to

alert messages appropriately: other money-handling procedures can fail, but (with caveats

about execution time, notice, and rent periods) an unbroken chain of correct alert-processing

objects leading back to a well-funded object will suffice to retain R in storage.

The idea of the alert process is to send requests for funds as far up and out through the

chain of client relationships as is needed to find an object able to supply ample money. Failure

to collect the needed money is assumed to imply that no solvent entity is willing to pay for

continued storage of the renter, which may therefore be garbage-collected.

An algorithm for accomplishing this is described in Figures 4 and 5, and code implement

ing it is listed in the appendix to this paper. Recipients of alert messages first seek funds

through application of the retainer-fee algorithm, then send further alert messages if needed.

Propagation of alert messages in endless loops is avoided by giving each a unique identifier;

objects refuse all but the first alert message with a given identifier.

All alert messages seek the full funds needed to satisfy the original alerter, plus enough to

compensate the participating objects for their handling costs. This enables them to maintain a

balance (the alert Reserve) adequate to process further alert messages. Maintaining an alert

Reserve is like keeping a quarter for use in emergencies. Should you ever need to use it, you

should use that phone call not only to take care of the emergency, but also to request a new

quarter.

254

demand
for rent

payment

K.E. Drexler and M.S. Miller

payment

reimbursement

Figure 4: State transitions of the alert algorithm. Ellipses represent an
object's states; labels on arrows show which messages may cause it to change to
another state. All states and messages are shown in Figure 5 except the demand
Jor-rent message (here drawn in grey).

When a client pays the requested amount, the recipient sends cancel messages to its other

clients, informing them that payment is no longer necessary. Due to asynchrony, however,

multiple clients may pay before being cancelled. Further, a payment propagating down a chain

of client-consultant references may be met by a corresponding cancellation propagating up the

same chain. When a consultant finds it has received an unnecessary payment, it reimburses

the payer-client. If the payer itself had merely passed the payment down, then it needs to pass

the reimbursement up to its payer-client; thus, it needs to remember which client paid it. Since

we require bounded storage costs for the algorithm, the payer needs to know when it can

forget this knowledge. This occurs when the payer is reimbursed or thanked for payment

when an alert payment is actually used for rent, thank you messages propagate back up the

path the payment came from. This algorithm allows a client to process only a single alert mes

sage at a time (another source of potential delay). A client must have enough storage to queue

up one message per consultant, and enough cash on hand to send one message per client,

hence the resources required to follow this protocol are strictly bounded.

From the perspective of the dividend algorithm, the alert process may be viewed as an

other iteration of the retainer-fee request cycle . Accordingly, objects that are prepared to pay

alert-me ssage requests promptly will have a competitive advantage over those that are not.

3.2.3.1. Open problems: the alert algorithm·

The greatest problem with this alert-message mechanism is the time it requires. Even in the

parallel-processing case, the time needed is proportional to the distance from a distressed to a

solvent object. In the sense of guaranteeing non-collection of non-garbage objects, it works in

the worst case only under the idealized assumption that alert processing times are negligible in

Computational Resour ce Manageme nt 255

~
Trying to pay rent Trying to pay alert Waiting to be thanked Idle

(alertlD, alertO , count) (alertlD, alertO, count, (alertlD, alertO , payer) s
alerter)

Alert

(alertlD, alerter, Send refusal to alerter If can pay amount,
amount) pay it;

else alert clients,

If alerl IDs differ : become "trying to pay
If can pay amount, pay it; alert"

else place on alertO ·

Cancel
Ignore cancel Cancel clients; Ignore cancel

(alertlD) (payment is coming) process next alert, or (reimbursement is
idle coming)

Ignore cancel

If alerl /Os differ : If for alert on alertO , dequeue ard ignore alert;
else ignore cancel

Thank you

(alertlD) Error Error
Thank payer; process

next alert or idle

Ignore thank you

If alerl IDs differ :
Ignore thank you

Reimbursement
Reimburse payer ;

(alertlD, check) Error Error process next alert or
idle

Accept
reimbursement

If alert /Os differ:
Accept reimbursement

Payment Pay rent, thank payer,
Pay alert, cancel other

(alertlD, check,
cancel other clients,

clients, wait to be Reimburse payer
process next ale rt or

payer) idle thanked

Reimburse payer

If alert /Os differ :
Reimburse payer

Refusal
If all clients have If all clients have

(alertlD) refused, liquidate self refused, refuse alert, Ignore refusal
process next alert or idle

Ignore refusal

If alert /Os differ :
Ignore refusal

Figure 5: Alert algorithm states and messages. Columns represent possi
ble object states (with state variables); rows represent messages (with arguments) .
Rows are split according to whether the alert/O in a received message matches
that remembered in the state variable . If so, the message concerns the same alert.
The first four messages propagate from consultants to clients ; the last two,from
clients to consultants .

256 K.E. Drexler and M.S. Miller

comparison to rent pay periods. In practice, this algorithm's range of effectiveness will de
pend on the real times involved. The outstanding open problem is to develop an algorithm
which avoids these delay problems in ensuring that non-garbage objects receive the money
they need, or to develop clear (preferably locally-computable) bounds on the correctness of
the alert algorithm-that is, to characterize when the algorithm is guaranteed to work.

3.2.4. Cost estimation: the base-demand algorithm

Given the overhead of the alert-message mechanism, one would prefer to minimize its use.
To do so requires forestalling emergencies by making sound, conservative estimates of future
cash needs. Further, if most objects maintain substantial cash reserves, alert messages need
not propagate far to reach a source of funds.

A renter might seek to determine its cash needs for the next cycle by multiplying the last
cycle ' s expenses by a safety margin. Though initially plausible, this approach is unstable in
the presence of cyclic client-consultant relationships: objects request money to build up safety
margins, and these requests become expenses for their clients; when propagated around a
loop, safety-margin multipliers cause an exponential explosion in the cash reserves and
requests.

The essential idea of the base-demand algorithm is to circulate estimated-cost information
to aid planning, and to do so independently of the more irregular and opportunistic circulation
of money. This algorithm operates in parallel with the retainer-fee and alert algorithms just
described.

With its first retainer request, R forwards to each client R's rental Period (the interval
until the end of R's next rent period) and a baseDemandShare equal to R's totalBase
Demand times Sjt- When R is newly created or retains no consultants, R's totalBase
Demand equals R's rent per unit time; otherwise it equals R's rent per unit time plus the sum
of the base De mandS hares reported by R's consultants. Each renter stores a table of its
consultant's baseDemandShares and rentalPeriods. A consultant's demand chunk is
defined as the product of the consultant's reported rent period and baseDemandShare.

A candidate standard for the adequacy of a desired Balance is that it call for enough cash
on hand to eliminate shortfalls during any rent period, in a steady-state system. This requires
determining an upper bound for the rent and retainer requests that may arrive and adding the
resulting value to the alertReserve discussed above. One such upper bound consists of R's
totalBaseDemand times R's rent period, to account for average expenses, plus the sum of
all R's consultants' demand chunks, to account for a worst-case peak in demand (in which,
for example, a set of long-period renters all charge retainer fees during one of R's shorter rent

periods).

3.2.f 1. Analysis

The dynamic behavior of this system may be visualized in terms of a physical model in
which each object's rent obligations are a source of "demand flux lines." When a new renter
is introduced in a system with uniform rent periods, the demand-flux lines stemming from its

Computational Resourc e Manageme nt

$12

(a)

Figure 6: Base demand flux lines.

Straight arrows represent clients point
ing to (retaining) consultants; the broken
arrow represents A's rent payments. Each
curved flux line represents a reported base
demand of one dollar per rent period (flux
line inf onnation propagates in the direc
tion opposite the arrows). These diagrams
assume that all clients estimate identical
usage. Only flux lines originating with
A's rent are shown. (Total fluxes are line
ar superpositions of individual fluxes.)

6 (a) shows the equilibrium state of
A's flux lines when A is charged $6 rent.
6 (b) shows a non-equilibrium state that
results after E begins pointing at B, split
ting its fee-payment with D and C (which
has not yet propagated the change). 6(c)
shows the new equilibrium, approached
asymptotically in this looped case.

257

(b)

(c)

258 K.E. Drexler and M.S. Miller

rent extend one consultant-to-client step per rent period until they end in a non-retained funds

source-that is, in an entity that pays its obligations out of earnings, capital, and so forth.

Where a retained consultant has several clients, the bundle of lines splits but conserves total

flux. When an established renter disappears, its associated flux lines suffer a wave of termina

tion, propagating at the same speed.

Figure 6 illustrates several states in a system before and after a new client begins pointing

at a looped structure. Where pointing relationships loop, but some pointers enter from the out

side (as shown), a certain fraction of demand-flux escapes in each circuit of the loop. This

gives the total demand flux an exponential settling behavior in which the equilibrium total

BaseDemand values accurately predict per-cycle expenses. (Non-uniform rent periods

change the speed with which lines propagate, but do not change the essential dynamics.)

3.2.4.2. Open problems: the base-demand algorithm

The base-demand algorithm propagates base demand information at an awkwardly slow
rate, particularly in the presence of cyclic structures. This can sometimes make emergency

cash demands (and resort to the alert algorithm) unavoidable. Better heuristics for determining

cash on hand would be desirable.

With the present algorithm, objects in cyclic structures will also report biased cost num

bers. In a modified version of the situation shown in Figure 6, if D's estimated use of B is

arbitrarily low, then B may report an arbitrarily high base demand estimate to E, although E

will actually be charged no more than the sum of A, B, and C's rent. This results in B appear

ing less competitive than it is. This bias is unpleasant, but at least has stable consequences: if

E does decide to retain B, it will be favorably surprised, and hence will have no incentive to

immediately reverse its decision.

Many of the problems of this algorithm result from objects participating in cyclic structures

of which they are unaware. Finding cycles by propagating full referencing information would

violate the privacy of the objects involved. An open problem is to determine how little infor

mation about reference structure can be revealed while still alleviating the above problems.

There are also problems with the incentive structure of this algorithm. Information on base

demand can be viewed as an indication of the expected storage surcharge for using a consul

tant. Objects therefore have an incentive to attempt to gain clients by deviating from the algo

rithm and understating costs. This is similar to the "low-balling" problem in cost-plus con

tracts--companies may knowingly provide a low estimate of costs while a contractor is being

selected; overruns occur later, after enough time and money have been invested in the project

to prevent clients from easily switching. A more market-like alternative for estimating future

costs might provide rewards and penalties that would avoid this peculiar incentive.

3.3. Applications

How practical are these algorithms for storage management? They are substantially more

complex than typical garbage collection algorithms, but this complexity need not be visible to

a programmer-it presents a simple interface. In terms of computational resources, though,

Computational Resource Management 259

they are substantially more expensive than typical garbage collection algorithms; this restricts
their applicability. One would not use them to allocate and free cons cells in a Lisp system,
but one could use them to allocate and free space for large objects--even Lisp systems them
selves-which might use conventional garbage collection internally.

In general, algorithms like these will make less sense when objects are small, simple,
short-lived, and mutually trusting. They will make more sense when objects are large enough
to make their storage costs worth considering (in the sense of "worth the overhead of comput
ing costs and making tradeoffs"). They will make more sense when objects are complex
enough to make economic decisions, and long-lived enough for the cost of making those deci
sions to be amortized over a significant storage time. Finally, some form of market-based

storage management seems necessary if objects coded by different groups for different pur
poses are to make efficient use of machine resources and each other.

Some of the flaws of these algorithms become unimportant if the consequence of evicting
an object is merely clearing a copy of it from a local cache or migrating it to a different
machine or a different form of long-term storage. If failure to pay rent does no! destroy an
object, then delays in alert processing can no longer threaten program correctness. Further,
large objects are more often candidates for migration than for deletion. Infom1ation of the sort
circulated by the dividend and base-demand algorithms can help to tune local working-sets of
objects in distributed open systems.

4. Initial strategies for trust
Many of the above algorithms make strategic sense only if one object can trust another

object to follow them. For example, there are direct financial incentives to embezzle funds or
misreport earnings by violating the dividend algorithm, and there are market-share incentives
to produce falsely low cost estimates by violating the base-demand algorithm. Further, im
proper market intelligence (who is using what services?) can be gleaned by comparing alert
ID values arriving via different consultants. Thus, one needs what may be called initial strate

gies for trust.

The simplest strategy is for an object to trust whatever existing objects it is initially
instructed to trust. This need not lead to great inflexibility or put a great burden on the pro
grammer. Standard initial market strategies for resource management can be provided by a
programming environment. In one kind of implementation, a wide range of objects will use
instances of the same, small set of initial-strategy objects; these objects will recognize and

trust each other, and will be able to interact with other objects in ways that do not assume

trust. (Unforgeable identities are an essential foundation for trust.) ~hus, use of standard
initial strategies can itself be an initial strategy for trust.

Other means of building trust are discussed in [II]. They include creating or noticing situa
tions having the characteristics of indefinitely-iterated prisoner's dilemma games (10] (see also

260 K.E . Drexler and M.S. Miller

the discussion in [I]), use of posted bonds, use of positive-reputation systems, and use of
behavior-certification agencies.

5. Probabilistic cash flows
As noted in the discussion of accounting overhead in the dividend algorithm, the incentive

structure of an algorithm (in the absence of risk aversion) is determined by its average expect

ed payoffs, which can deviate from its actual payoffs on any given occasion. This principle .
has general applicability.

5.1. Processor accounting

The overhead of the escalator algorithm may be acceptable at the scale of, say, tasks in the
Mach operating system [IV], but not at the finer-grained level of Mach threads, Actor tasks
[11], or FCP processes [VJ. Scheduling of light-weight processes like these might best be
handled by a simple round-robin scheduler, which itself buys time through an auction house.
How might these light-weight processes be charged so as to subject them to price incentives
and compensate the round-robin process for the time it buys-all at low overhead? One
approach is to use probabilistic charging: at random, uniformly-distributed times (a Poisson
process with mean interarrival time T), note which light-weight process is currently running
and charge its sponsoring account T times the current price of processor time. On the average,
the round-robin process receives the market price for time; on the average, each light-weight
process pays it. And yet on a typical occasion, a light-weight process will run without being
charged, and hence without accounting overhead.

5.2. Gambling

A different kind of probabilistic cash flow is gambling, wagering money on a chance
event. This too has its place.

Consider an object which has just received an alert message asking for more money than it
can pay or raise though retainer-fee requests. Sending an alert message may be expensive, in
terms of direct communication costs and costs imposed on clients. It is an elementary result of
decision analysis [12] that when X% more money has over X% more utility, for some value of
X (which requires that the utility-vs.-money curve somewhere be concave upwards) there
exists a fair bet (or one with a small "house percentage") that is rationally worth taking. This
can be the case both in alert processing and elsewhere in an agoric system.

To illustrate the principle (albeit with absurd numbers), assume that an object has a balance
of $50 and receives an alert message demanding $100. Assume further that the object has 10
clients, and that transmitting an alert costs $1 per message . If the object simply alerts its cli
ents and then pays its bill, it will pay a total of $110. If, however , the object gambles the $50
in a fair bet on a double-or-nothing basis, its expected net payment will be half the net pay

ment that will result if the gamble is won (1/2 x $50) plus half the net payment that will result
if the gamble is lost, (1/2 x ($50 + $100 + $10)). This equals $105, for an expected savings

Computational Resource Management 261

of $5. Similar bets can be profitable, so long as the house percentage amounts to less than $5.
Thus, gambling might profitably be made part of a market strategy for alert processing.

One can predict that market forces will favor the emergence of rational gambling in agoric
systems. To provide gambling services, one expects to see lottery objects with substantial
cash reserves. These will accept payments of X units of currency with a request for a greater
sum Y, and return Y with a probability slightly less than X/Y.

5.3. Insurance

Another (and more respectable) form of gambling is insurance, or risk pooling. This can
be based on a form of trust that will arise naturally in an agoric system.

A set of objects sharing a single program (code, script, class) is like a set of organisms
sharing a single genome. It is an elementary result of evolutionary theory [13) that the genes of
such organisms (in, say, a colony) will be selected for complete altruism among "individ
uals". And indeed, colonial polyps often share digestive tracts, and thus all their food.

Objects sharing a script can likewise (with full trust) offer to share cash reserves, in effect
insuring one another against temporary shortages and expensive alert processing. In insurance
terms, the shared incentives of these objects eliminate the problem of "moral hazard", that is,
of insured entities taking uneconomic risks because "the insurance company will pay for any
losses". Here, objects care as much about the "insurance company" as about themselves
(more accurately, "evolutionary pressures will favor those objects which behave in a manner
that can be regarded as 'caring' in this way"). Objects of types which abuse this mechanism to
prevent proper garbage collection will in general have higher costs and lose in price competi
tion. This is a case in which Hofstader's "superrationality" [14) and Genesereth's "common
behavior assumption" [15) will apply.

6. Conclusions
This paper has explored mechanisms for the allocation of processor time and storage that

are compatible both with programming practice and with market mechanisms. Processor
scheduling through an auction process yields a flexible, decentralized priority system, allow
ing a variety of strategies that make tradeoffs involving the speed, certainty, and cost of ser
vice. Storage can be managed through auctioning of rental space and decentralized networks
of client-consultant relationships. This yields a distributed garbage collection algorithm able
both to collect unreferenced loops that cross trust boundaries and to accumulate rough price
information to guide economic decisions regarding, for example, local caching in distributed
systems.

Some of these algorithms (e.g., for processor scheduling) have per-decision costs com
parable to those of non-market mechanisms in current use; others have costs that are much
greater. In general, these costs will be acceptable for objects of sufficient size and processes
of sufficient duration. The question of the appropriate scale at which to apply market mecha
nisms can be addressed by additional study but will best be addressed by experience in actual

262 K.E. Drexler and M.S. Miller

comp utational markets . The proposals made here can doubtless be improved upon; they are

merely intended to illustrate some of the issues involved in incentive engineering for computa

tional markets, and to provide a starting point for discussion and design. Any advances

toward lower costs, greater effectiveness, and better incentive structures will shift tradeoff

points in favor of finer-grained application of market mechanisms.

Even heavy overhead costs would leave intact a solid case for market mechanisms in com

putation. This case rests on the value of doing the right thing (or something like it) with some

overhe ad costs, rather than doing something blatantly wrong with polished efficiency. And

whe n finding the right thing to do requires cooperation, competition, and freewheeling experi

mentation, the value of decentralized systems with market accountability becomes very great

indeed.

Appendix: code for the alert algorithm
The alert algorithm is the most procedurally intricate of the initial strategies described here,

hence it is the one least suited to description in English. It is documented here by code written

in the programming language FCP [V, 16]; this code has not been run. To facilitate object

oriented programming, we are using a form of syntactic sugar known as "keyword terms"

[17]. A keyword term can be distinguished from the familiar positional term by use of curly

braces instead of parentheses. The arguments of a keyword term are identified by the key

word to the left of the colon instead of by position. All unmentioned keywords are considered

to be associated with unbound variables. The keyword term "foo{KTerm but bar:a, baz:b }" is

identical to the keyword term "KTerm" except that "bar" is associated with "a" and "baz" is

associated with "b". Keyword terms can be efficiently translated into positional terms.

o/omem
% Alert

% Not Idle
mem([Msg I Self], State) :-

alert{ alertlD:ID, alerter:Alerter} = Msg,
state{stateName:SName, alertlD:ID} = State,
SName =\= idle I
Alerter= [refusal{alertlD:ID}],
mem(Self?, State).

% IDs differ
mem([Msg I Self], State) :-

alert{alertlD:ID1} = Msg,
state{stateName:SName, alertlD:ID2} = State,
SName =\= idle,
ID1 =\= ID2 I
tryToPayAlert(Msg, Self, NewSelf, State,

New State),
mem(NewSelf?, NewState?).

%Idle

% alerta empty
mem([Msg I Self], State):-

alert{} = Msg,
state{stateName:idle, alertQ:[]} = State I
tryToPayAlert(Msg, Self, NewSelf, State,

NewState),
mem(NewSelf?, NewState?).

% alertO non-empty
mem(Self, State) :-

state{ stateName:idle, alertO:[AlertMsg I
AlertMsgs], clients:Clients} = State I

alert{alertlD:ID, alerter:Alerter, amount:Amount} =
AlertMsg,

alertClients(Clients, alert{AlertMsg but
alerter:Self1 }, NumClients, NewClients),

NewState = state{State but
stateName:tryingToPayAlert, alertlD:ID,
alertO:AlertMsgs, count:NumClients?,
clients :N ewClients ?} ,

merge(Self?, Self1 ?, New Self),
mem(NewSelf?, NewState?).

% cancel

% Trying to pay rent
mem([cancel{alertlD:ID} I Self], State) :-

Computational Resource Management 263

state{stateName:tryingToPayRent, alertlD:ID} =
State I

mem(Self?, State) .

% Trying to pay alert
mem([cancel{alertlD:ID} I Self], State) :

state{stateName:tryingToPayAlert, alertlD:ID,
clients:Clients} = State I

cancelClients(Clients, cancel{alertlD:ID},
NewClients),

NewState = state{State but stateName :idle,
clients :N ewClie nts},

mem(Self?, NewState?) .

% Waiting to be thanked
mem([cancel{alertlD :ID} I Self], State):

state{stateName :waitingToBe Thanked, alertlD :ID}
= State I

mem(Self?, State) .

% Ids differ
mem([cancel{alertlD:ID1} I Self], State):-

state{stateName:SName, alertlD :ID2, alertO:O} =
State,

SName =\= idle,
ID1 =\= ID2 I
forgetAlert(O?, ID1, NewO),
NewState = state{State but alertO:NewO?}.
mem(Self?, NewState?).

%Idle
mem([cancel{} I Self], State) :

state{stateName:idle, alertO:[]} = State I
mem(Self?, State) .

% Thank you

% Trying to pay rent
mem([Msg I Self], State) :-

thankYou{alertlD :ID} = Msg,
state{stateName:tryingToPayRent, alertlD:ID} =

State I
error(Msg),
mem(Self?, State) .

% Trying to pay alert
mem([Msg I Self], State) :-

thankYou{alertlD :ID}= Msg,
state{stateName:tryingToPayAlert, alertlD:ID} =

State I
error(Msg),
mem(Self?, State).

% Waiting to be thanked
mem([Msg I Self], State) :-

thankYou{alertlD:ID} = Msg,
state{stateName:waitingToBeThanked, alertlD:ID,

payer:Payer} = State I
Payer= [Msg],
NewState = state{State but stateName:idle},
mem(Self?, NewState?).

%Ids differ
mem([thankYou{alertlD :ID1} I Self], State) :

state{stateName :SName, alertlD :ID2} = State,
SName ='= idle,
ID1 =\= ID2I
mem(Self?, State).

%Idle
mem([thankYou{} I Self], State) :

state{stateName :idle} = State I
mem(Self?, State) .

% Reimbursement

% Trying to pay rent
mem([Msg I Self], State):-

reimbursement{alertlD :ID} = Msg,
state{stateName :tryingToPayRent , alertlD :ID} =

State I
error(Msg),
mem(Self?, State) .

% Trying to pay alert
mem([Msg I Self], State) :

reimbursement{alertlD:ID} = Msg,
state{stateName:tryingToPayAlert, alertlD:ID} =

State I
error(Msg),
mem(Self?, State) .

% Waiting to be thanked
mem([Msg I Self], State):-

reimbursement{alertlD :ID} = Msg,
state{stateName:waitingToBeThanked, alertlD:ID,

payer:Payer} = State I
Payer= [Msg],
NewState = state{State but stateName:idle}.
mem(Self?, NewState?).

% Ids differ
mem([Msg I Self], State) :

reimbursement{alertlD:ID1, check:Check} = Msg,
state{alertlD:ID2} = State,
ID1 =\= ID2I
deposit(Check?, State?, NewState),
mem(Self?, NewState?).

%Idle
mem([Msg I Self], State) :

reimbursement{check:Check} = Msg,
state{stateName:idle} = State I
deposit(Check?, State?, NewState),
mem(Self?, NewState?).

%Payment

% Trying to pay rent
mem([Msg I Self], State) :-

payment{alertlD:ID , check:Check, payer :Payer} =
Msg,

264 K.E. Drexler and M.S. Miller

state{stateName :tryingToPayRent, alertlD:ID,
clients:Clients} = State I

payRent(Check?, State?, State1),
Payer= [thankYou{alertlD:ID} I Payer1],
creditPayer(Payer1, Check?, State1 ?, State2),
cancelClients(Clients, cancel{alertlD:ID},

NewClients),
NewState = state{State2 but stateName:idle,

clients:NewClients},
mem(Self?, NewState?).

% Trying to pay alert
mem([Msg I Self], State) :-

payment{alertlD:ID, check:Check, payer:Payer} =
Msg,

state{ stateName:tryingToPay Alert, alertlD: ID,
alerter:Alerter, clients:Clients} = State I

creditPayer(Payer, Check?, State?, State1),
Alerter= [payment{Msg but payer:Self1 }],
cancelClients(Clients, cancel{alertlD :ID},

NewClients),
NewState = state{State1? but

stateName:waiting T oBe Thanked,
payer:Payer, clients:NewClients},

mem(Self?, NewState?).

% Waiting to be thanked
mem([Msg I Self], State) :-

payment{alertlD:IO, check:Check, payer:Payer} =
Msg,

state{ stateName:waitingToBe Thanked, alertlD:ID}
= State I

Payer= [reimbursement{alertlD:ID,
check:Check}],

mem(Self?, State).

% ids differ
mem([Msg I Self), State) :-

payment{alertlD:ID1, check:Check, payer:Payer}
= Msg,

state{stateName:SName, alertlD:ID2} = State,
SName =\= idle,
ID1 ='= ID2I
Payer= [reimbursement{alertlD:ID,

check:Check}],
mem(Self?, State) .

%Idle
mem([Msg I Self], State) :-

payment{alertlD:ID, check:Check, payer:Payer} =
Msg,

state{stateName:idle} = State I
Payer= [reimbursement{alertlD:ID,

check:Check}),
mem(Self?, State) .

% Refusal

% Trying to pay rent

%count= O
mem(Self, State) :

state{stateName:tryingToPayRent, count:0} =
State I

liquidate(Self, State).

%count> O
mem([refusal{alertlD:ID} I Self], State) :

state{stateName:tryingToPayRent, alertlD:ID,
count:Count} = State,

Count> 0 I
NewCount := Count - 1,
NewState = state{State but count:NewCount?},
mem(Self?, NewState?).

% Trying to pay alert

%count= O
mem(Self, State) :-

state{ stateName:tryingToPay Alert, alertlD: ID,
count:0, alerter:Alerter} = State I

Alerter= [refusal{alertlD :ID}),
NewState = state{State but stateName:idle},
liquidate(Self, NewState?).

%count> O
mem([refusal{alertlD:ID} I Self], State) :-

state{ stateName:tryingToPay Alert, alertlD: ID,
count:Count} = State,

Count> 0 I
NewCount := Count - 1,
NewState = state{State but count:NewCount?},
mem(Self?, NewState?).

% Waiting to be thanked
mem([refusal{alertlD:ID} I Self], State) :-

state{ stateNam e:waitingTo Be Thanked, alert ID: ID}
= State I

mem(Self? , State) .

% Ids differ
mem([refusal{alertlD:ID1} I Self), State) :

state{stateName:SName, alertlD:ID2} = State,
SName =\= idle,
ID1 ='= ID2I
mem(Self?, State).

%idle
mem([refusal{} I Self], State) :

state{stateName:idle} = State I
mem(Self?, State).

Computational Resourc e Managem ent 265

% Other predicates

% tryToPayAlert
tryToPayAlert(AlertMsg, Self, NewSelf, State,

NewState) :-
alert{amount:Amount} = AlertMsg,
collectRetainer(Amount?, State?, State1, Check,

Ok),
tryToPayAlert1 (Ok?, Check?, AlertMsg, Self,

NewSelf, AlertsForO),
state{alertO:O} = State1 ?,
append(AlertsForO?, O?, NewO),
NewState = state{State1? but alertO:NewO?}.

try To Pay Alert 1 (true, Check, AlertMsg, Self, NewSelf,
m :-

aIert{aIertI0 :I0. alerter:Alerter} = AlertMsg,
Alerter= [payment{alertlD:I0, check:Check,

payer:Self1 }],
merge(Self?, Self1 ?, NewSelf).

tryToPayAlert1 (false, Check, AlertMsg, Self,
NewSelf, [Alert]).

% alertClients
alertClients([], AlertMsg, 0, 0) :

alert{ alerter: □}= AlertMsg.

Acknowledgments

alertClients([Client I Clients], AlertMsg , NumClients ,
[NewClient I NewClients]) :

alert{alerter:Alerter} = AlertMsg,
Client = [alert{AlertMsg but alerter:Alerter1} I

NewClient?],
alertClients(Clients, alert{AlertMsg but

alerter:Alerter2}, NCMinus 1, NewClients),
NumClients := 1 + NCMinus1,
merge(Alerter1 ?, Alerter2?, Alerter).

% cancelClients
cancelClients([], CancelMsg, 0).

cancelClients([Client I Clients], CancelMsg,
[NewClient I NewClients]) :-

Client = [CancelMsg I NewClient?].
cancelClients(Clients, CancelMsg, NewClients).

% forgetAlert
forgetAlert(O, ID, []).

forgetAlert([AlertMsg I OJ, ID, 0) :- '
alert{alert/0:I0, alerter:[]}= AlertMsg I true.

forgetAlert([AlertMsg I OJ, 101, [AlertMsg I NewO?]) :
alert{alert/D:I02} = AlertMsg,
101 ='= 1021
forgetAlert(O, 101, NewO).

Note: see the paper "Markets and Computation: Agoric Open Systems" in this book [II] for

general discussion, acknowledgments, and comparison with other work.

References

Papers referenced with roman numerals can be found in the present volume :

Huberman, Bernardo (ed.), The Ecology of Computation
(Elsevier Science Publishers/North-Holland, 1988).

[I] Miller, Mark S., and Drexler, K. Eric,
"Comparative Ecology: A Computational
Perspective", this volume.

[II] Miller, Mark S., and Drexler, K. Eric,
"Markets and Computation: Agoric Open
Systems", this volume.

[III) Liskov, Barbara, "Guardians and Actions:
Linguistic Support for Robust, Distributed
Programs", this volume .

[IV] Rashid, Richard F ., "From RIG to Accent to
Mach: The Evolution of a Network Operating
System", this volume.

[VJ Kahn, Kenneth, and Miller, Mark S.,
"Language Design and Open Systems", this

volume.

[1] Lieberman-Hewitt Algorithm: Lieberman ,
Henry, and Hewitt, Carl, "A Real-Time
Garbage Collector Based on the Lifetimes of
Objects", in: Communications of the ACM
(June 1983) 26, 6, pp.419-429.

[2] Quarterman, John S., Silbershatz, Abraham,
Peterson, James L., "4.2BSD and 4.3BSD as
Examples of the UNIX System", in: ACM
Computing Surveys (December 1985) Vol. 17
No. 4 pp .379-418 .

[3] Rees, Jonathan A., and Adams, Norman I.,
IV, ''T: a Dialect of Lisp or, Lambda : The
Ultimate Software Tool", in: Proceeding s of

266 K.E. Drexler and M.S. Miller

the 1982 ACM Symposium on lisp and
Functional Programming (August 1982).

[4] Bishop, Peter B., Computers with a Large
Address Space and Garbage Collection (MIT,
Cambridge, MA, May 1977) MIT/LCS(TR-
178.

[5) Smith, Vernon L., "Experimental Methods in
the Political Economy of Exchange", in:
Science (10 October 1986) Vol. 234, pp.167-
173.

[6] Friedman, Daniel, "On the Efficiency of
Experimental Double Auction Markets", in:
American Economic Review (March 1984)
Vol. 24, No. I, pp. 60-72.

[7] Theriault, D., Issues in the Design and
Implementation of Act 2 (MIT AI Lab,
Cambridge, MA., 1983) AI-1R-728.

[8] Kornfeld, William A., "Using Parallel
Processing for Problem Solving" (MIT AI
Lab, Cambridge, MA, 1979) MIT-AI-561.

[9] Ungar, David Michael, The Design and
Evaluation of a High Performance Smalltalk
System (MIT Press, Cambridge, MA, 1987).

[10) Axelrod, Robert, The Evolution of
Cooperation (Basic Books, New York, 1984).

[11) Agha, Gui, Actors: A Model of Concurrent
Computation in Distributed Systems (MIT
Press, Cambridge, MA, 1986).

[12) Raffia, Howard, Decision Analysis:
Introductory Lectures on Choices under
Uncertainty (Addison-Wesley, Reading, MA,
1970).

[13) Dawkins, Richard, The Selfish Gene (Oxford
University Press, New York, 1976).

[14) Hofstadter, Douglas R., "Dilemmas for
Superrational Thinkers, Leading Up to a
Luring Lottery", in: Metamagical Themas:
Questing for the Essence of Mind and Pattern
(Basic Books, New York, 1985) pp. 739-755.

[15) Genesereth, M. R., Ginsberg, M. L., and
Rosenschein, J. S., Cooperation without
Communication (1984) HPP Report 84-41.

[16) Shapiro, Ehud, (ed.), Concurrent Prolog:
Collected Papers (MIT Press, Cambridge,
MA, 1987) in press.

[17) Hirsh, Susan, Kahn, Kenneth M., and Miller,
Mark S., lnterming: Unifying Keyword and
Positional Notations (Xerox PARC, Palo
Alto, CA, 1987) in press.

